

This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world's books discoverable online.

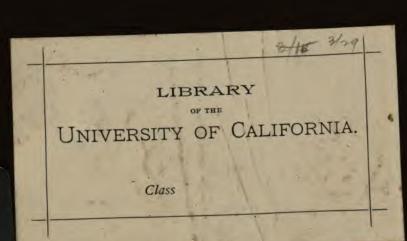
It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the publisher to a library and finally to you.

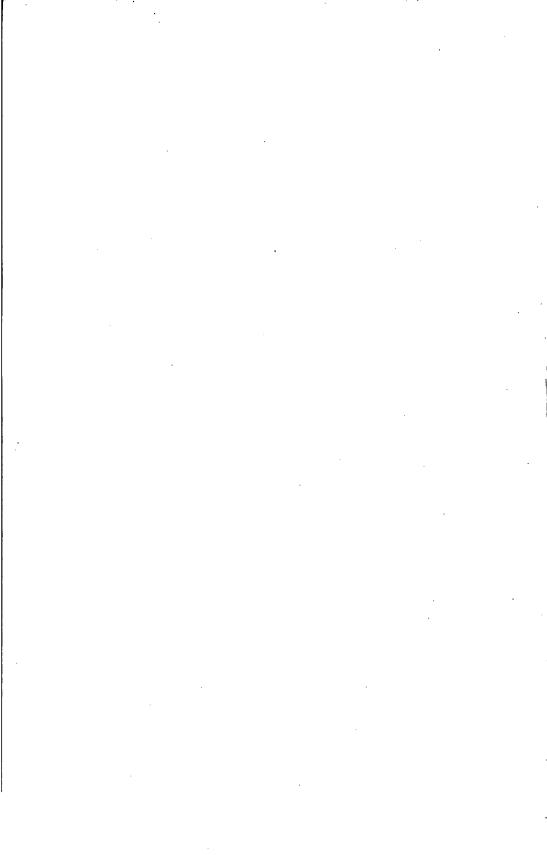
Usage guidelines

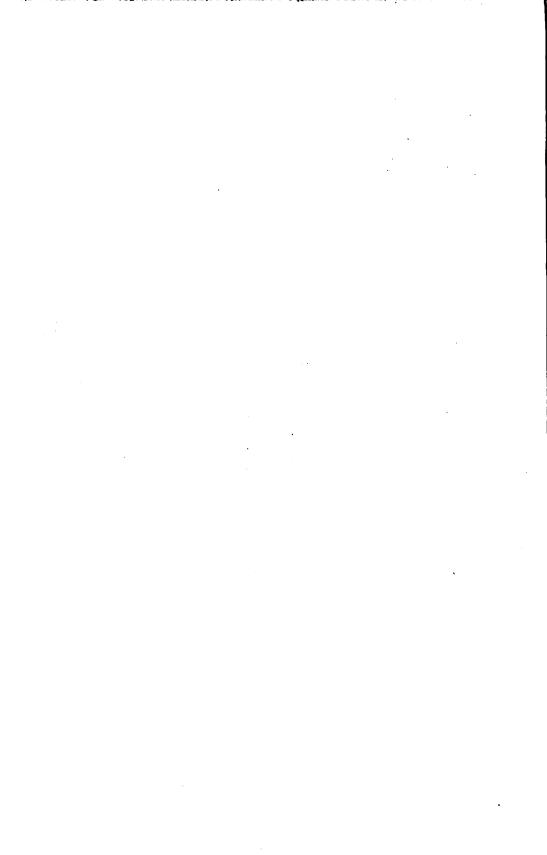
Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.

We also ask that you:


- + *Make non-commercial use of the files* We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.
- + Refrain from automated querying Do not send automated queries of any sort to Google's system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.
- + *Maintain attribution* The Google "watermark" you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.
- + *Keep it legal* Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

About Google Book Search


Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/


\$B 76 523

. . . ---

WORKS OF

PROFESSOR CECIL H. PEABODY

PUBLISHED BY

JOHN WILEY & SONS.

Thermodynamics of the Steam-engine and other Heat-engines.

This work is intended for the use of students in technical schools, and gives the theoretical training required by engineers. Sixth Edition, Revised, vii + 543 pages, 115 figures. 8vo, cloth, \$5.00.

Tables of the Properties of Steam and other Vapors, and Temperature-Entropy Table.

These tables were prepared for the use of students in technical schools and colleges, and of engineers in general. Eighth Edition, Rewritten. 8vo, vi + 133 pages, cloth, \$1.00.

Valve-Gears for Steam-engines.

This book is intended to give engineering students instruction in the theory and practice of designing valve-gears for steam-engines. Second Edition, Revised and Enlarged. 8vo, v + 142 pages, 33 folding-plates, cloth, \$2.50.

Steam-boilers.

By Prof. Cecil H. Peabody and Prof. Edward F. Miller. Nearly 400 pages; 142 illustrations. 8vo, cloth, \$4.00.

Manual of the Steam-engine indicator.

154 pages; 98 figures. 12mo, cloth, \$1.50.

Naval Architecture.

v + 616 pages; 217 figures. 8vo, cloth, \$7.50.

TABLES OF THE PROPERTIES OF STEAM

AND OTHER VAPORS

AND

TEMPERATURE-ENTROPY TABLE

BY

CECIL H. PEABODY

PROFESSOR OF NAVAL ARCHITECTURE AND MARINE ENGINEERING
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

EIGHTH EDITION. REWRITTEN
TOTAL ISSUE FIFTEEN THOUSAND

NEW YORK

JOHN WILEY & SONS

LONDON: CHAPMAN & HALL, LIMITED

1909

1909 13270

GENERAL

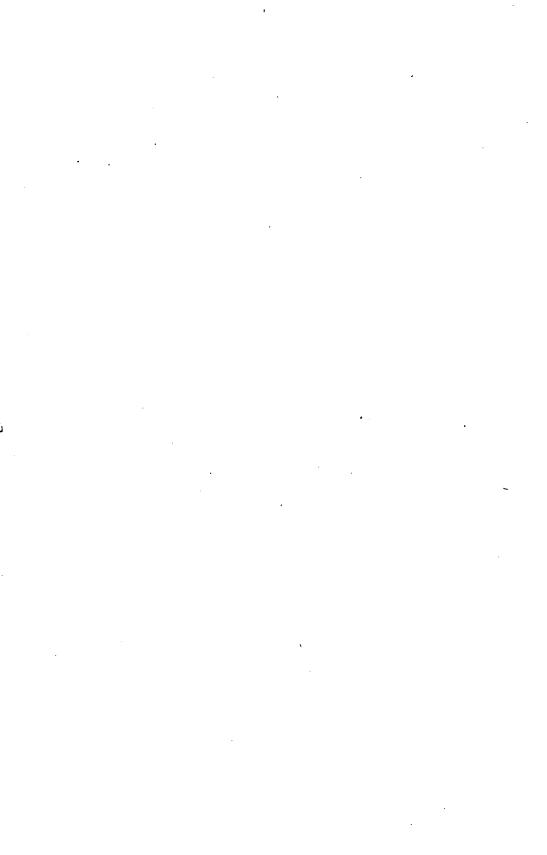
COPYRIGHT, 1888, 1907, 1909,
BY
CECIL H. PEABODY,

Stanbope Press F. H. GILSON COMPANY BOSTON, U.S.A.

PREFACE.

THE Tables of the Properties of Steam were published in 1888, to accompany the author's "Thermodynamics of the Steam Engine"; in 1907 they were revised, taking advantage of added information then available, and a Temperature-Entropy Table was added to facilitate calculations for steam turbines.

The properties of steam have recently been redetermined by new and refined methods, that are capable of great certainty and precision, so that computations based upon them show a satisfactory concordance. These tables have been recomputed with this information, and may, therefore, be used with confidence and may be expected to have permanence.


The Temperature-Entropy Table gives solutions of all adiabatic problems (and many others) both for saturated and for superheated steam with ease and precision, and permits us to make certain determinations not otherwise possible. For engineering purposes answers to such problems may in general be read directly from the table; greater refinement can be had by interpolation when necessary.

Original data are given in the Introduction, and methods of computation are given with such completeness that each one may decide for himself the degree of accuracy he shall attribute to the properties and methods presented.

The author desires to express his appreciation of assistance given by Mr. H. A. Everett, S.B., in the preparation of material, computation of tables and reading of proof.

C. H. P.

MAY 1st, 1909.

CONTENTS.

				Page
Introducti	on			I
Table I.	STEAM, ENGLISH UNITS, DEGREES			35
Table II.	STEAM, ENGLISH UNITS, POUNDS			45
Table III.	STEAM, FRENCH AND ENGLISH UNITS			54
Table IV.	ETHER			66
Table V.	Ацсоноц			67
Table VI.	CHLOROFORM			68
Table VII.	CARBON BISULPHIDE			69
Table VIII.	CARBON TETRACHLORIDE			70
Table IX.	ACETON			71
Table X.	Ammonia			72
Table XI.	SULPHUR DIOXIDE			73
Table XII.	SPECIFIC VOLUMES OF LIQUIDS			74
Table XIII.	VOLUMES OF HOT WATER			74
Table XIV.	INCHES OF MERCURY AND POUNDS			75
Table XV.	CORRECTIVE FACTORS, SUPERHEATED STEAM .			76
Temperatui	RE-ENTROPY TABLE			77
Naperian 1	LOGARITHMS			130
Four-Place	LOGARITHMS			132

PROPERTIES OF STEAM AND OTHER VAPORS.

INTRODUCTION.

For engineering purposes steam is generated in a boiler which is partially filled with water, and arranged to receive heat from the fire in the furnace. The ebullition is usually energetic, and more or less water is mingled with the steam; but if there is a fair allowance of steam space over the water, and if proper arrangements are provided for withdrawing the steam, it will be found when tested to contain a small amount of water, usually between half a per cent and a per cent and a half. Steam which contains a considerable percentage of water is passed through a separator which removes almost all of it. Such steam is considered to be approximately dry.

If the steam is quite free from water it is said to be dry and saturated; steam from a boiler with a large steam space and which is making steam very slowly is nearly if not quite dry.

Steam which is withdrawn from the boiler may be heated to a higher temperature than that found in the boiler, and is then said to be superheated.

The physical properties of both saturated and superheated steam have now been determined by methods susceptible of certainty and precision so that computations based on them show satisfactory concordance. The results of these investigations will be quoted directly from the original authorities, together with their estimate of the degree of precision to be attributed to their results. This matter should be read with care, so that each one may determine for himself the confidence he can have in the following tables and the accuracy of computation made by their aid.

Saturated Steam. — The essential properties of saturated steam are heat of the liquid, heat of vaporization, specific pressure and specific volume; other properties dependent on these are heat equivalent of external work, heat equivalent of internal work, entropy of the liquid and entropy of vaporization. All these properties depend on the temperature only, and may conveniently be determined and tabulated for use in solving engineering problems. They are given by Tables I and III for each

degree Fahrenheit and each degree Centigrade, and by Table II for each pound per square inch. Properties of some other vapors are given in Tables IV to XI.

Thermometric Scales. — Temperatures are commonly measured by mercurial thermometers which may be graduated on the Fahrenheit or the centigrade scales. The centigrade scale has its zero at the freezing-point of water, and the boiling-point is called 100 degrees. The Fahrenheit thermometer has its freezing-point numbered 32° F., and its boiling-point 212 degrees. It is clear that

$$t_F = \frac{9}{5} t_C + 32$$
 and $t_C = \frac{5}{9} (t_F - 32)$.

Physicists base their heat measurements on a thermodynamic scale, which is determined from certain theoretical considerations of the properties of gases. For engineering purposes the difference between this scale and the scale of the mercurial thermometer is not important.

Standard Temperature. — It is customary to refer all calculations for gases to the standard conditions of the pressure of the atmosphere (760 mm. of mercury) and to the freezing-point of water. Formerly the freezing-point was taken as the standard temperature for water and steam as even now it is the initial point for tables of the properties of saturated vapors. But the investigation of the mechanical equivalent of heat by Rowland resulted in a determination of the specific heat of water with much greater delicacy than is possible by Regnault's method of mixtures, and showed that the freezing-point is not well adapted for the standard temperature for water. It is the habit of many physicists to take 15° C. as the standard temperature, and this corresponds substantially with 62° F., at which the English units of measure are standard.

Unit of Heat. — The unit for the measurement of heat is the amount of heat required to raise one unit of weight of water one degree from the standard temperature.

The calorie is the amount of heat required to raise the temperature of one kilogram of water from 15° to 16° C.

The British Thermal Unit is the amount of heat required to raise the temperature of one pound of water from 62° to 63° F.

These two definitions lead to a discrepancy of 0.03 of one per cent, which is insignificant for engineering purposes; in these tables the B.T.U. is taken as the standard, and the discrepancy noted is ignored.

Some physicists prefer to use for the unit of heat, one hundredth part of the heat required to raise a kilogram of water from freezing-point to boiling-point. Such a mean calorie is greater than those defined above, by 0.2 of one per cent. It requires also that a different value shall be assigned to the mechanical equivalent of heat than that given in the following section.

Mechanical Equivalent of Heat.—If mechanical energy or work is transformed into heat and applied to heating water, it will be found that 778 foot-pounds of work will be required to heat one pound of water from 62° to 63° F.; in other words, one B.T.U. is equivalent to that number of foot-pounds. This is known as the mechanical equivalent of heat. The most authoritative determination of this important constant appears to be that by Rowland,* who gives the value quoted, namely,

778 foot-pounds.

This is equivalent to

427 metre kilograms

in the metric system. Since his experiments were made, this important physical constant has been investigated by several experimenters, and also a recomputation of his results has been made after a recomparison of his thermometers. The conclusion appears to be that his results may be a little small, but the differences are not important, and it is not certain that the conclusion is valid. There seems, therefore, no sufficient reason for changing the accepted values given above.

Specific Heat is the number of thermal units required to raise a unit of weight of a given substance one degree of temperature. The specific heat of water at standard temperature is unity, and any specific heat is essentially a ratio.

Specific Heat of Water. — The most reliable determination of the specific heat of water is that by Dr. Barnes,† who used an electrical method devised by Professor Callendar and himself, and who extended the method to and below freezing-point by carefully cooling water without the formation of ice to -5° C. This method gives relative results with great refinement, and gives also a good confirmation of Rowland's determination of the mechanical equivalent of heat. Dr. Barnes reports values of the specific heat of water up to 95° C.

^{*} Proc. Am. Acad., vol. xv (N. S. vii), 1879.

[†] Physical Review, vol. xv, p. 71, 1902.

For temperatures above boiling-point values of the specific heat of water have been determined by the author from Regnault's* experiments on the heat of the liquid, allowing for the correct specific heat of the water in his calorimeter from Barnes's work. The probable error of the heats of the liquid thus obtained, appears to be one-fourth of a per cent. But the heat of the liquid for temperatures above boiling-point is habitually associated with the heat of vaporization, and the above error is less than one-tenth per cent of their sum.

In the following table Barnes's results are quoted directly from 0° to 55° C.; from 55 to 95 degrees his results have been slightly increased to join with results determined by recomputing Regnault's experiments on the heat of the liquid for water by allowing for the true specific heat at low temperature from Dr. Barnes's experiments. The maximum effect of modifying Dr. Barnes's results is to increase the heat of the liquid at 95 degrees by one-tenth of one per cent.

Temperature.		Specific	Temperature.		Specific	Temperature.		Specific	
C.	F.	Heat.	C.	F.	Heat.	C.	F.	Heat.	
0	32	1.0094	45	113	0.99760	90	194	1.00705	
5	41	1.00530	50	122	0.99800	95	103	1.00855	
10	50	1.00230	55	131	0.99850	100	212	1.01010	
15	59	1.00030	60	140	0.99940	120	248	1.01620	
20	68	0.99895	65	149	1.00040	140	284	1.02230	
25	77	0.99806	70	158	1.00150	160	320	1.02850	
30	86	0.99759	75	167	1.00275	180	356	1.03475	
35	95	0.99735	80	176	1.00415	200	392	1.04100	
40	104	0.99735	85	188	1.00557	220	428	1.04768	

The specific heats of water at high temperatures have been determined by Dieterici† using a method which does not appear to have the certainty of Barnes's method. His results appear to be systematically larger than Barnes's results, the discrepancy at 95° C. being four-tenths of a per cent. Should his specific heats be used to determine the heat of the liquid at 200° C., the results would appear to be four-tenths of a per cent larger than the tabular values of the heat of the liquid at 200° C., in Table III. Even so if this be compared with the sum of the heat of the liquid and the

^{*} Mémoires de l'Institut de France, etc., tome xxvi.

[†] Annalen der Physik, vol. 16, part 4, p. 593. 1905.

heat of vaporization, the discrepancy becomes about one-tenth of a per cent.

Heat of the Liquid. — The heat required to raise one unit of weight of any liquid from freezing-point to a given temperature is called the heat of the liquid at that temperature.

If the specific heat of water were constant the heat of the liquid would be found by multiplying the increase of temperature by the specific heat. An approximate result can be obtained by using the mean specific heat. For example, the mean specific heat from 0° to 25° C. may be taken to be $\frac{1}{5}(\frac{1}{2} \times 1.0094 + 1.00530 + 1.00230 + 1.00030 + 0.99895 + \frac{1}{2} \times 0.99806) = 1.00212$,

and

$$25 \times 1.00212 = 25.05$$

which in this case corresponds exactly with the tabular value in Table III.

The integral calculus gives for a varying specific heat the expression

$$q = \int c \, dt$$

for the heat of the liquid. An equivalent of the operation represented by this equation is to draw a curve with temperatures and specific heats as coördinates and to measure the area under that curve. The fact that the specific heat does not vary much from unity suggests the following method:

Let
$$c = 1 + k$$

where k is the difference between the specific heat and unity; it may be positive or negative as the case may be. Then

$$q = t + \int kd,$$

which leads to a convenient graphical method since k is always small, and the diagram may be drawn with a large scale for ordinates, and accurate results can be obtained. The values for the heat of the liquid in the tables were obtained in this way.

The following table gives equations for heats of the liquid for various substances as determined by Regnault:*

^{*} Mémoires de l'Institut de France, etc., tome xxvi.

HEAT OF THE LIQUID.

Alcohol $q = 0.54754t + 0.0011218t^2 + 0.000002206t^3$
Ether $q = 0.52901t + 0.0002959t^2$
Chloroform $q = 0.23235t + 0.0000507t^2$
Carbon bisulphide $q = 0.23523t + 0.0000815t^2$
Carbon tetrachloride $q = 0.19798t + 0.0000906t^2$
Aceton $q = 0.50643t + 0.0003965t^2$

Heat of Vaporization. — If a unit of weight of a liquid be at a certain temperature and subject to the corresponding pressure, then the amount of heat required to entirely vaporize it into dry saturated vapor at that temperature and against that pressure, is called the heat of vaporization. Henning* gives the following formula for the heat of vaporization of a kilogram of water in calories,

$$r = 94.210 (365 - t)^{0.31249} \tag{1}$$

He gives as the probable error of this equation one-tenth of one per cent. Other experiments by Dieterici,† Griffiths,‡ and A. C. Smith§ are represented by this equation with nearly the same degree of precision.

The heat of vaporization of one pound of water in B.T.U. is given by the following equation, obtained by transforming equation (1).

$$r = 141.124 (689 - t)^{0.31249}. (2)$$

Both of the above equations are applicable from freezing to boiling-point; equation (1) from 0° to 100° C., and equation (2) from 32° to 212° F.

Total Heat. — The amount of heat required to raise a unit of weight of a liquid from freezing-point to a given temperature and to vaporize it into dry saturated vapor against the corresponding temperature is called the total heat.

The quantity is clearly equal to the sum of the heat of the liquid and the heat of vaporization; if the first is represented by q and the latter by r, then H, the total heat, is given by the following equation,

$$H = r + q. (3)$$

Conversely, if H and q are known, the preceding equation will give r.

^{*} Annalen der Physik, vol. 21, part 4, p. 849, 1906.

[†] Annalen der Physik, vol. 16, part 4, p. 912, 1905.

[‡] Phil. Trans. 186, p. 261, 1895; p. 593, 1905.

[§] Physical Review, vol. xxv, 1907.

From an investigation of certain experiments on the superheating of steam by throttling, Dr. Harvey N. Davis* gives for the total heat of steam in B.T.U. per pound,

$$H = H_{212} + 0.3745 (t - 212) - 0.000550 (t - 212)^2, \tag{4}$$

in which H_{212} is the total heat at boiling point. Equation (2) gives for the heat of vaporization at boiling-point 969.7, and the method on page 5, for finding the heat of the liquid, gives 180.3 at that temperature, consequently the above equation may be written, for English units,

$$H = 1150 + 0.3745(t - 212) - 0.000550(t - 212)^2$$
. (5)

For French units the equation takes the form

$$H = 638.9 + 0.3745 (t - 100) - 0.00099 (t - 100)^{2}.$$
 (6)

Dr. Davis gives one-tenth of one per cent for the probable error of this equation.

For other liquids the heats of vaporization are given by Regnault.

Specific Pressure. — It is customary to develop theoretical thermodynamic equations with the specific pressure expressed in pounds per square foot, for English units. Engineers habitually express pressures in pounds per square inch.

For French units, specific pressures are expressed in kilograms per square meter. Engineers use kilograms per square centimeter, and on the other hand physicists commonly express pressure in millimeters of mercury.

One cubic decimeter (or one liter) of mercury weighs 13.5959 kilograms, and a cubic decimeter is one-thousandth of a cubic meter, consequently the pressure of a column of mercury one millimeter high, on a base one meter square, is 13.5959 kilograms.

The normal pressure of the atmosphere is taken to be 760 mm. of mercury (at 0° C.), which is equivalent to 10,333 kilograms per square meter.

^{*} Trans. Am. Soc. Mech. Eng., 1908.

The normal pressure of the atmosphere is, therefore, 1.0333 kilograms per square centimeter. It was formerly the custom to graduate pressure gauges in atmospheres, for use in countries using the metric system. There is a tendency to confusion of units that are roughly approximate, and in some cases it is necessary to determine whether a pressure is intended to be in atmospheres or in kilograms per square centimeter.

Taking the meter to be equivalent to 39.37 inches, and the kilogram to weigh 2.20462 pounds, then one millimeter of mercury will be equivalent to

$$\frac{13.5959 \times 2.20462}{\overline{39.37}^2} = .019338$$

of a pound per square inch. The normal pressure of the atmosphere is 760 times this, or 14.696 pounds per square inch. The corresponding specific pressure is 2116 pounds per square foot.

Pressure of Saturated Steam. — Recent determinations of the pressure of saturated steam have been made by Holborn and Henning* with all the resources of modern physical methods including the platinum thermometer. Their results reduced to the thermometric scale are set down in Table III exactly as given in their original report. Their own tests covered the range of temperature from 50° C. to 200° C., but they extend their results to 205° C. The results which they give from freezing-point to 50° C. were deduced by them from experiments of Thiesen and Scheel. In Table III the pressures from 205° to 220° C. are extrapolated by the author by aid of a curve of corrections for Regnault's equation for the range 100° to 220° C.

Holborn and Henning attribute to their own experiments a precision of $\tau b \sigma$ of a degree Centigrade; this is far beyond technical requirements for direct application, but is needed in the computation of specific volumes, as will appear later. This and Scheel's experiments had a less degree of precision; and the extrapolation from 205° to 220° C. is open to some doubt.

Pressures of Other Vapors. — Regnault determined the pressures of various vapors and deduced for all of them equations having the form

$$\log p = a + b\alpha^n + c\beta^n. \tag{7}$$

^{*} Annalen der Physik, vol. 26, part 4, p. 833,1908.

The following table gives the special forms of the equation and the constants for several vapors:

	$\log \alpha$.	a.	b		, c.	
Alcohol	$a - b\alpha^n + c\beta^n$ $a + b\alpha^n - c\beta^n$ $a - b\alpha^n - c\beta^n$ $a - b\alpha^n - c\beta^n$ $a - b\alpha^n - c\beta^n$	5.4562028 5.0286298 5.2253893 5.4011662 12.0962331	4.9809960 0.0002284 2.9531281 3.4405663 9.1375180		0.0485397 3.1906390 0.0668673 0.2857386 1.9674890	
	log α.	log β.	n.	1	imits.	
Alcohol	0.0145775 9.9 9.9974144 10 9.9 9.9977628 10 9.9	996877 — 10 9868176 — 10 9911997 — 10	t + 20 t - 20 t + 20	- 20° + 20° - 20°	2, + 150° C. 2, + 120° C. 3, + 164° C. 4, + 140° C. 6, + 188° C.	

Zeuner * gives the following equation for aceton based on Regnault's work:

log
$$p = a - b\alpha^n + c\beta^n$$
;
 $a = 5.3085419$;
log $b\alpha^n = + 0.5312766 - 0.0026148t$;
log $c\beta^n = - 0.9645222 - 0.0215592t$.

Specific Volume of Saturated Vapor. — From the extreme difficulty of direct experimental determinations of the specific volume of saturated vapor it has been customary to compute this property by aid of the equation

$$s = u + \sigma = \frac{r}{AT} \frac{1}{\frac{dp}{dt}} + \sigma, \qquad (8)$$

where s is the volume of the vapor and σ is the volume of the liquid; the other quantities are r the heat of vaporization, T the absolute temperature, $\frac{1}{A}$ the mechanical equivalent of heat, and $\frac{dp}{dt}$ the differential coefficient of the pressure with regard to temperature. A close approximation to the differential coefficient may be had by the following process: choosing a temperature (for example 100° C), take the pressure at two degrees

^{*} Mechanische Wärmetheorie.

higher (102° C.) and at two degrees lower (98° C.) and divide by 4. The pressures must be in kilograms per square meter. From Table III we deduce

$$\frac{\Delta p}{\Delta t} = \frac{1109.3 - 961.6}{4} = 36.92.$$

The pressures are 1000 times the tabular pressures in kilograms per square The expression $\frac{\Delta p}{\Delta t}$ is taken to represent an operation of the nature explained above. This statement is given in hopes that it may make evident an important method to readers who are not conversant with calculus.

Equation (8) must be used for all other vapors than steam, and for steam at temperatures less than 100° C.; it probably gives the best values for the specific volume of steam at temperatures higher than 100° C., as will appear in the discussion of experimental results.

Laws of Thermodynamics. — Theoretical thermodynamics is based on two propositions or laws known as the first and second laws. The first law is stated on page 3, under the heading Mechanical Equivalent of Heat.

The second law cannot be stated so briefly and satisfactorily; it may perhaps be best represented by one of its consequences, which can be written

$$e=\frac{T-T'}{T},\tag{9}$$

where e is the efficiency of an ideal perfect heat engine and T and T' are · absolute temperatures at which the engine receives and rejects heat.

For our present purpose it may be sufficient to define the absolute temperature by the expressions

$$T = t + 273^{\circ} \text{ C.}$$
 (10)
 $T = t + 459.5^{\circ} \text{ F.}$ (11)

$$T = t + 459.5^{\circ} \,\mathrm{F}.$$
 (11)

Derivation of Equation (8).—It is hoped that the following simple derivation of equation (8) may be evident even to those who are not familiar with theoretical thermodynamics. Suppose that we have a simple engine consisting only of a piston moving in a cylinder with a closed end, both being supposed to be made of a non-conducting substance. Let Fig. 1 represent the indicator diagram of a series of operations as follows. assume that there is one pound of water at the temperature t in the cylin-

der at the beginning of operations which can be represented by a; to this let there be applied the heat r; it will entirely vaporize the water at constant pressure and the volume will increase from σ to s, the increase being

The second operation is an expansion represented by
$$bc$$
. During the third operation, represented by cd ,

we must imagine that heat is withdrawn in some lo_ way and that the steam partially condenses. Finally we have a compression da, which closes the diagram.

The second law of thermodynamics, represented by equation (9), gives for the efficiency of the diagram

$$\frac{T-(T-\Delta T)}{T} = \frac{\Delta T}{T},$$

for the temperature at which heat is withdrawn is ΔT degrees less than T. Consequently the heat changed into work is

$$\frac{r\Delta T}{T}$$
.

But by the first law of thermodynamics this heat is equivalent to the work represented by the diagram. If $\frac{1}{4}$ is the mechanical equivalent, then the work produced from the heat is

$$\frac{1}{A}\frac{r\Delta T}{T}$$
.

But the pressure is p pounds per square foot during the forward stroke and $p - \Delta p$ during the return stroke, so that the effective work is

$$\Delta p \cdot u$$
,

where u is the increase in volume. For example, the piston might have one square foot of area and move u feet. Equating the above expressions

$$u\Delta p = \frac{r\Delta T}{AT}.$$

Now it can make no difference whether the change of temperature is measured in the usual way and written Δt or measured as above. fore

$$u = \frac{r}{AT\frac{\Delta p}{\Delta t}}.$$
 (13)

The expression $\frac{\Delta p}{\Delta t}$ is that discussed on page 10. Those familiar with calculus will recognize that equation (13) leads to

$$u = \frac{r}{AT\frac{dp}{dt}}. (14)$$

Specific Volume of Saturated Steam. — The relation of the pressure of saturated steam to the temperature is given by Holborn and Henning in the form of a table of results which are quoted directly in Table III, the pressure being expressed in millimeters of mercury. It is considered that the best way of dealing with the differential coefficient $\frac{dp}{dt}$ is to replace it

by the ratio $\frac{\Delta p}{\Delta t}$, as discussed on page 10, using 4° C. for the interval of temperatures Δt .

A number of elements enter into this consideration. If the relation of the pressure to the temperature could be represented by a second degree curve, that is, if such a curve were a parabola with its axis vertical, the ratio $\frac{\Delta p}{\Delta t}$ for any interval would be precisely equal to $\frac{dp}{dt}$. A table that could be represented by such a curve would have constant second differences; by second differences are meant the differences of the tabular differences as in Table III. An examination of second differences derived from Table III shows that they increase slowly, but that the increase is not perceptible for four degrees. For a six-degree interval the increase is barely perceptible, and for ten degrees it is very apparent. Now the precision claimed for the measurement of temperature is $\frac{1}{100}$ of a degree, so that a four-degree interval appears to give a precision of computation of $\frac{1}{400}$ for a single value of $\frac{\Delta p}{\Delta t}$. It may be noted in passing that the precision of observation of the height of the mercury column is better than the temperature determinations and therefore does not contribute to the probable error.

In order to diminish the effect of local variations of the nature of accidental errors, the values of the ratio $\frac{\Delta p}{\Delta t}$ were computed for each degree

of temperature from 0° C. to 220° C. The first and second differences were then computed, and the computed values of $\frac{\Delta p}{\Delta t}$ were changed when necessary to the amount of $\tau \tau_{000}$ in order to make the second differences regular. This process is equivalent to drawing a smooth or fair curve to represent physical properties obtained by observation.

Having values of the ratio $\frac{\Delta p}{\Delta t}$ for each degree of temperature, the specific volumes were computed by equation (8). These values were then tested for fairness by taking second differences, and again the computed values were varied when necessary to the extent of τ_{000} to make the second differences regular. The combined effect of both fairings is estimated not to exceed τ_{00} , and it is believed that the probable error of the specific volumes thus determined is not greater than that amount for the range of temperature 50° C. to 200° C. covered by Holborn and Henning's experiments. This estimate carries with it the assumption that the methods of fairing give somewhat greater mean precision than can be attributed to a single computation of $\frac{\Delta p}{\Delta t}$.

For the range of temperature from 0° C. to 50° C., and especially for temperatures less than 30° C. (86° F.), so small a probable error cannot be claimed for the specific volumes; but that range has less interest for engineers. For temperatures less than 30° C. the specific volumes were derived in the following way. In the first place the values Apu given in Table III were computed from the specific volumes, and a curve was drawn to represent them; above 30° C. the computed values varied from the curve less than $\frac{1}{1000}$; in only a few cases was the variation greater than $\frac{1}{1000}$. Below 30° C. it was considered more correct to take values of Apu from the curve which was there appreciably straight, and values of the specific volume were obtained for Table III by inversion of the method of computing Apu. In passing it may be said that all values of Apu in Tables I and III were derived from the curve mentioned, which gave a greater degree of precision than needed for that purpose.

Since the pressures corresponding to temperatures above 200° C. are extrapolated, the specific volumes computed from them are affected by the same degree of uncertainty that attaches to the pressures.

Specific Volumes of Other Vapors. — In order to apply equation (8) to the computation of vapors for which Regnault's equations are given on page 9, we may derive the differential coefficient in the form

$$\frac{1}{p}\frac{dp}{dt}=A\alpha^n+B\beta^n. \tag{15}$$

The following table gives values to be used for the factors that appear in that equation.

	Sign.		Y am (4 : 15)	Log (Ββ*).		
	Aa^n . $B\beta^n$.		Log (Aa").			
Alcohol	+ + + + + +	- + + + +	-1.1720041-0.0029143 t -1.3396624-0.0031223 t -1.3410130-0.0025856 t -1.4339778-0.0022372 t -1.8611078-0.0002880 t -1.3268535-0.0026148 t t, temperature C.	-4.4616396+0.0145775 t -2.0667124-0.0131824 t -2.0511078-0.0088003 t -1.3812195-0.0050220 t		

Experimental Determinations of Specific Volumes. — By far the best direct determinations of the specific volumes of saturated steam are those reported by Knoblauch,* Linde, and Klebe in connection with their determinations of the properties of superheated steam. These experiments determined the pressures at constant volume, and the results are so treated as to give the volume at saturation by extrapolation with great certainty. In their report they claim for their results, including volumes at saturation, a probable error not greater than $\overline{\mathfrak{sbo}}$.

COMPARISON OF EXPERIMENTAL AND COMPUTED VALUES OF THE SPECIFIC VOLUME OF SATURATED STEAM.

_	\ \ \ \	olumes Cu.	м.	Tempera-	Volume Cu. M.			
Tempera- ture.	Experi- mental.	Computed.	Per Cent Deviation.	ture.	Experi- mental.	Computed.	Per Cent Deviation.	
100	1.674	1.671	+0.18	145	0.4458	0.4457	+0.02	
105	1.421	1.419	+0.14	150	0.3927	0.3921	+0.15	
110	1.211	1.209	+9.17	155	0.3466	0.3463	+0.09	
115	1.036	1.036	0	160	0.3069	0.3063	+0.20	
120	0.8894	0.8910	-0.18	165	0.2724	0.2729	+0.18	
125	0.7688	0.7698	-0.13	170	0.2426	0.2423	+0.12	
130	0.6670	0.6677	-0.10	175	0.2168	0.2164	+0.19	
135	0.5809	0.5812	-0.05	180	0.1940	0.1941	-0.05	
140	0.5080	0.5081	-0.02				l	

^{*} Mitteilungen über Forschungsarbeiten, etc., Heft 21, S. 33, 1905.

These experimenters give 32 determinations of the volume of saturated steam. In order to make a comparison of these experimental values with computations in Table III, a large plot was made with temperatures for abscissæ and logarithms of volumes for ordinates, and a fair curve was drawn; from this curve the experimental values set down in the preceding table were deduced; the computed values are taken from Table III.

The greatest deviation is 0.2 of one per cent, which is the probable error assigned by the experimenters to their work. It may therefore be concluded that the claim of a probable error not in excess of $\frac{1}{500}$ for the computed values of the specific volume of saturated steam, and of a similar degree of precision for the experimental values, is warranted.

Now equation (8) includes explicitly the heat of vaporization, the absolute temperature and the mechanical equivalent of heat as well as the differential coefficient $\frac{dp}{dt}$. It also includes the heat of the liquid implicitly, since the heat of vaporization is derived from the total heat. Consequently the claim of a precision of $\pi \delta \sigma$ for the specific volume attributes a like degree of precision to the first three named properties, and the same effective certainty to the heat of the liquid. It is true that we may independently attribute a greater precision to the three first properties named. Thus a probable error of 1000 is claimed for the total heat by Dr. Davis, and Callendar* claims a probable error of 1000 or better for the absolute temperature; the real value of the mechanical equivalent is even now slightly in question, but the value assigned is probably in error less than 1000.

The conclusion appears to be that our knowledge of the properties of saturated steam is sufficient for engineering purposes, and that tables computed with available data will not require change.

Specific Volume of Liquids. — The coefficient of expansion of most liquids is large as compared with that of solids, but it is small as compared with that of gases or vapors. Again, the specific volume of a vapor is large compared with that of the liquid from which it is formed. Consequently the error of neglecting the increase of volume of a liquid with the rise of temperature is small in equations relating to the thermodynamics of a saturated vapor, or of a mixture of a liquid and its vapor when a considerable part by weight of the mixture is vapor. It is, therefore, customary to consider the specific volume of a liquid to be constant.

^{*} Phil. Mag., Jan., 1903.

Table XII, giving the specific volumes of various liquids, was taken from the *Phys.-Chem*. Tabellen of Landolt and Börnstein.

Volume of Water. — Table XIII gives the volumes of water compared with its volume at 4°. From 0° to 100° C., the values are those given by Rossetti. Above 100°, the values are those calculated by Hirn's equation.

Volumes of Liquids. — The volumes of liquids at high temperatures, compared with the volume at freezing-point, are represented by the following equations given by Hirn:*—

Water 100° C. to 200° C. (vol. at 4° C.=	Logs.
unity) $v=1+0.00010867875t$	6.0361445 - 10
$+0.0000030073653t^2$	4.4781862 - 10
$+0.000000028730422t^3$	1.4583419 - 10
$-0.00000000066457031t^4$	8.8225409 - 20
Alcohol 30° C. to 160° C. (vol. at 0° C.=	
unity) $v=1+0.00073892265t$	6.8685991 - 10
$+0.00001055235t^2$	3.0233492 - 10
-0.00000092480842 <i>t</i> 3	2.9660517 - 10
$+0.0000000040413567t^{4}$	0.6065278 - 10
Ether 30° C. to 130° C. (vol. at 0° C.=	• • • • • • • • • • • • • • • • • • • •
unity) $v=1+0.0013489059t$	7.1299817 - 10
$+0.0000065537t^2$	4.8164866 - 10
$-0.00000034490756t^{3}$	2.5377028 - 10
$+0.0000000033772062t^4$	0.5285571 - 10
Carbon bisulphide 30° to 160° C. (vol. at	
$0^{\circ} C = \text{unity} $	7.0674636 - 10
$+0.0000016489598t^2$	4.2172103 - 10
$-0.0000000081119062t^{3}$	0.9091229 - 10
$+0.00000000060946589t^4$	8.7849494 - 20
Carbon tetrahcloride 30° to 160° C. (vol.	
at 0° C.= unity) $v=1+0.0010671883t$	7.0282409 - 10
$+0.0000035651378t^2$	4.5520763 - 10
$-0.00000014949281t^{8}$	2.1746202 - 10
$+0.00000000085182318t^4$	9.9303494 - 20

Internal and External Latent Heat. — The heat of vaporization overcomes external pressure, and changes the state from liquid to vapor at constant temperature and pressure. Let the specific volume of the saturated vapor be s, and that of the liquid be σ , then the change of volume is $s - \sigma = u$, on passing from the liquid to the vaporous state. The external work is

$$p(s-\sigma)=pu,$$

and the corresponding amount of heat, or the external latent heat, is

$$Ap(s-\sigma)=Apu,$$

A being the reciprocal of the mechanical equivalent of heat.

* Annales de Chimie et de Physique, 1867.

That part of the heat of vaporization which is not used in doing external work is considered to be used in changing the state from liquid to vapor. This work required to change the molecular arrangement is called disgregation work. The heat required to do the disgregation work is represented by

$$\rho = r - Apu. \tag{15}$$

Quality or Dryness Factor. — All the properties of saturated steam, such as pressure, volume, and heat of vaporization, depend on the temperature only, and are determinable either by direct experiment or by computation, and are commonly taken from tables like those assembled in this book.

Many of the problems met in engineering deal with mixtures of liquid and vapor, such as water and steam. In such problems it is convenient to represent the proportions of water and steam by a variable known as the quality or the dryness factor; this factor, x, is defined as that portion of each pound of the mixture which is steam; the remnant, 1 - x, is consequently water.

Specific Volume of Wet Steam. — If a pound of a homogeneous mixture of water and steam is x part steam, then the specific volume may be represented by

$$v = xs + (1 - x) \sigma = xu + \sigma,$$

where u is the increase of volume due to vaporization.

Intrinsic Energy. — When heat is applied to a substance, a part is expended in increasing the temperature, a part is required to do the external work, and the remainder is considered to be used up in changing the molecular arrangement or condition. It has been seen that these three portions can be separated for saturated vapor; they are represented by q, Apu, and ρ . In some cases the first and last cannot be separated and must be treated together; in any case it is convenient to consider them together. The mechanical equivalent of their sum is called the intrinsic energy and may be represented by

$$E = \frac{\mathbf{I}}{A} (\rho + q). \tag{16}$$

If only a portion of the liquid is vaporized the external work and the disgregation work may be obtained by multiplying the proper quantity by the dryness factor, and the heat equivalents will be

$$Axpu$$
 and $x\rho$.

In such case the intrinsic energy is

$$E = \frac{1}{A}(x\rho + q). \tag{17}$$

Entropy. — In the discussion of steam-engines or other heat engines, it is convenient to begin by considering the way in which steam (or other working substance) would behave if the cylinder were made of non-conducting material. Afterwards the effect of the actual material can be investigated. The expansion line which an indicator would draw under such conditions is called an adiabatic line. Calculations for adiabatic changes of steam can be made by aid of a special function devised for the purpose and called entropy. A discussion of adiabatic actions and of entropy can be found in any text-book on Thermodynamics; for example, on pages 17 and 31 of the "Thermodynamics of the Steam Engine" by the author. It is sufficient for our present purpose to consider that entropy can be expressed numerically and that the numerical values enter into the calculation of certain engineering problems.

It is customary to represent entropy in general by ϕ , but entropy may be represented by θ in dealing with a liquid.

To calculate the increase of entropy during any operation we may divide the heat added by the absolute temperature at which it is added. This leads to a very simple calculation in the case of vaporization of a liquid, as will be seen in the next paragraph. If the heat is added at a varying temperature, an approximation may be had by breaking the heat into small portions and dividing each by the mean temperature and then summing up.

Such an operation can be represented by the expression

$$\phi - \phi_0 = \int \frac{dQ}{T},\tag{18}$$

where dQ represents an infinitesimal amount of heat and T is the absolute temperature at which it is added.

Equation (18) is a consequence of the second law of thermodynamics, and that law is sometimes said to be represented by it.

Entropy of Vaporization. — If a pound of water at the temperature t (or absolute temperature T) is partially vaporized, the heat expended is xr. The method of calculating entropy in the preceding paragraph gives in this case

 $\phi - \phi_0 = \frac{xr}{T} = x \frac{r}{T}. \tag{19}$

In Tables I, II, and III values of $\frac{r}{T}$ are given for each degree or each pound.

Entropy of the Liquid. — When water is heated the specific heat varies and the heat is added at a varying temperature. While an approximation can be had by breaking up the heat into small parts as indicated in the preceding paragraph, a satisfactory determination of the entropy of the liquid can be made only by aid of the methods of the integral calculus. These methods give for the entropy of the liquid

$$\theta = \int \frac{dq}{T} = \int \frac{cdt}{T}.$$
 (20)

It is shown on page 5 that the specific heat of water can be represented by

$$c = 1 + k$$

and this expression introduced in the preceding equation gives

$$\theta = \int \frac{dt}{T} + \int \frac{kdt}{T} = \log_e \frac{T}{T_0} + \int_{t_0}^t k \, \frac{dt}{T}, \tag{21}$$

in which t_0 and T_0 are the temperature by the thermometer of freezing, and the corresponding absolute temperature. The first part of the above expression for the entropy of the liquid can be computed readily, and the second part (which is small) can be determined graphically with great precision. This method was used for the tables of the properties of saturated steam.

To obtain the entropy of any liquid named on page 6, we may first differentiate the proper equation to obtain dq and then integrate as indicated by the equation

$$\theta = \int \frac{dq}{T}.$$

The values given in Tables IV to IX were determined in this way.

Entropy of a Mixture of a Liquid and its Vapor. — The increase in entropy due to heating a unit of weight of a liquid from freezing-point to the temperature t and then vaporizing x portion of it is

$$\theta + \frac{xr}{T}$$
,

where θ is the entropy of the liquid, r is the heat of vaporization, and T is the absolute temperature. For steam $\frac{r}{T}$ may be taken from the tables; for other vapors it must usually be calculated.

For any other state determined by x_1 and t_1 we shall have, for the increase of entropy above that of the liquid at freezing-point,

$$\frac{x_1r_1}{T_1}+\theta_1.$$

The change of entropy in passing from one state to another is

$$\phi - \phi_1 = \frac{xr}{T} + \theta - \frac{x_1r_1}{T} - \theta_1.$$

When the condition of the mixture of a liquid and its vapor is given by the pressure and the value of x, then Table II giving the properties at each pound may be conveniently used for this computation.

Adiabatic Equation for a Liquid and its Vapor. — During an adiabatic change the entropy is constant, so that the preceding equation gives

$$\frac{x_1r_1}{T_1} + \theta_1 = \frac{x_2r_2}{T_2} + \theta_2. \tag{22}$$

When the initial state, determined by x_1 and t_1 or p_1 , is known and the final temperature t_2 , or the final pressure p_2 , the final value x_2 may be found by this equation. The initial and final volumes may be calculated by the equations

$$v_1 = x_1 u_1 + \sigma$$
 and $v_2 = x_2 u_2 + \sigma$.

Tables of the properties of saturated vapor commonly give the specific volume s but

$$s = u + \sigma$$
.

The value of σ for water is 0.016, and for other liquids will be found in Table XII.

For example, one pound of dry steam at 100 pounds absolute has the following properties found in Table II:

$$t_1 = 327^{\circ}.9 \text{ F.}$$
 $\frac{r_1}{T_1} = 1.1273;$ $\theta_1 = 0.4748;$ $s_1 = 4.432;$ $x_1 = 1.$

If the final pressure is 15 pounds absolute, we have

$$t_2 = 213^{\circ}.0 \text{ F.}$$
 $\frac{r_2}{T_2} = 1.4409$; $\theta_2 = 0.3140$; $s_2 = 26.28$,

whence

$$1.6021 = 1.4409 x + 0.3140.$$

$$\therefore x_2 = .8039.$$

The initial and final volumes are

$$v_1 = s_1 = 4.432,$$

 $v_2 = x_2 u_2 + \sigma = 23.43.$

Such a problem cannot be solved inversely, that is, we cannot assume a final volume and determine directly the temperature and pressure corresponding. The Temperature-Entropy Table to be explained later will, however, give an approximate solution directly, and an exact solution by interpolation.

External Work during Adiabatic Expansion. — Since no heat is transmitted during an adiabatic expansion, all of the intrinsic energy lost is changed into external work, so that

$$W = E_1 - E_2 = \frac{1}{A} (q_1 - q_2 + x_1 \rho_1 - x_2 \rho_2). \tag{23}$$

For example, the external work of one pound of dry steam in expanding adiabatically from 100 pounds to 15 pounds absolute is

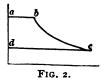
$$W = 778 (298.5 - 181.3 + 1 \times 805.7 - 0.8939 \times 896.2),$$

 $W = 121.8 \times 778 = 94,760$ foot-pounds.

Attention should be called to the unavoidable defect of this method of calculation of external work during adiabatic expansion, in that it depends on taking the difference of quantities which are of the same order of magnitude. For example, the above calculation appears to give four places of significant figures, while, as a matter of fact, the total heat H from which ρ is derived is affected by a probable error of $\frac{1}{1000}$ or perhaps more. Both the quantities

$$q_1 + x_1 \rho_1 \quad \text{and} \quad q_2 + x_2 \rho_2$$

have a numerical value somewhere near 1000, and an error of τd_{000} is nearly equivalent to one thermal unit, so that the probable error of the above calculation is nearly one per cent. For a wider range of temperature the error is less; had the lower pressure been 1 pound the error would


have been $\frac{1}{3}$ of a per cent. This matter should be borne in mind in considering the use of approximate methods of calculation, for example, by aid of a diagram like the temperature-entropy diagram.

Heat Contents. — The heat required to raise one pound of water from freezing-point to a given temperature t corresponding to a pressure p, and to vaporize a part x at that pressure, is represented by

$$xr + q$$
;

this quantity may be called the heat contents.

Rankine's Cycle. — An important investigation for the steam-engine may be made by aid of the accompanying figure which represents the

quality x_1 is

indicator diagram from a steam-engine without clearance and with a non-conducting cylinder. admitted at an absolute pressure p_1 from a to b; adiabatic expansion follows from b to c; finally the steam is exhausted from c to d at the pressure p_2 . external work during admission for one pound of steam having the

 $p_1v_1 = p_1(x_1u_1 + \sigma);$

the external work during expansion is

$$E_1 - E_2 = \frac{1}{A} (q_1 - q_2 + x_1 \rho_1 - x_2 \rho_2);$$

and the external work during exhaust is

$$p_2v_2=p_2(x_2u_2+\sigma),$$

which must be subtracted since it is done by the piston on the steam. The effective work of the cycle is

$$p_1v_1 + E_1 - E_2 - p_2v_2$$

or, substituting the proper values,

$$W = \frac{1}{A} (q_1 + x_1 \rho_1 + A p_1 x_1 u_1 - q_1 - x_2 \rho_2 - A p_2 x_2 u_2) + (p_1 + p_2) \sigma;$$

the last term is small and may be dropped.

Remembering that

$$r = \rho + A p u,$$

we have

$$W = \frac{1}{A} (q_1 + x_1 r_1 - q_2 - x_2 r_2).$$

The values of r and q may be taken from Tables I, II, or III, and the value of x_2 can be determined by aid of the equation

$$\frac{x_1r_1}{T_1} + \theta_1 = \frac{x_2r_2}{T_2} + \theta_2.$$

By the first law of thermodynamics the difference between the heat supplied to an engine and the heat rejected is equivalent to the work done, provided there are no losses; therefore,

$$Q_1 - Q_2 = x_1 r_1 + q_1 - (x_2 r_2 + q_2).$$

This most important conclusion can be stated as follows: the heat changed into work by a steam-engine working on Rankine's cycle is equal to the difference in the heat contents of the steam supplied to and exhausted by the engine.

This same expression is found in the discussion of steam-turbines.

Problems of this nature can be solved immediately by aid of the Temperature-Entropy Table.

Superheated Steam. — A dry and saturated vapor, not in contact with the liquid from which it is formed, may be heated to a temperature greater than that corresponding to the given pressure for the same vapor when saturated; such a vapor is said to be superheated. When far removed from the temperature of saturation, such a vapor follows the laws of perfect gases very nearly, but near the temperature of saturation the departure from those laws is too great to allow of calculations by them for engineering purposes.

All the characteristic equations that have been proposed have been derived from the equation

$$pv = RT$$

which is very nearly true for the so-called perfect gases at moderate temperatures and pressures; it is, however, well known that the equation does not give satisfactory results at very high pressures or very low temperatures. To adapt this equation to represent superheated steam a corrective term is added to the right-hand side which may most conveniently be assumed to be a function of the temperature and pressure, so that calculations by it may be made to join on to those for saturated steam.

The most satisfactory characteristic equation of this sort is that given by Knoblauch,* Linde, and Klebe,

$$pv = BT - p \left(\mathbf{1} + ap \right) \left[C \left(\frac{373}{T} \right)^3 - D \right]. \tag{24}$$

p the pressure is in kilograms per square metre, v is in cubic metres, and T is the absolute temperature by the Centigrade thermometer. The constants have the following values:

$$B = 47.10$$
, $a = 0.000002$, $C = 0.031$, $D = 0.0052$.

In the English system of units, the pressures being in pounds per square foot, the volumes in cubic feet per pound, and the temperatures in the Fahrenheit scale, we have

$$pv = 85.85 T - p (1 + 0.00000976 p) \left(\frac{150,300,000}{T^3} - 0.0833\right).$$
 (25)

The following equation may be used with the pressure in pounds per square inch:

$$pv = 0.5962 T - p(1 + 0.0014p) \left(\frac{150,300,000}{T^3} - 0.0833 \right).$$
 (26)

The labor of calculation is principally in reducing the corrective term, and especially in the computation of the factor containing the temperature. Table XV gives values of this factor for each five degrees from 100° to 600° F. For ordinary use the nearest value in the table may be selected without interpolation; when this is done the error in calculation of a volume will not exceed 0.2 of a per cent for pressures less than 150°; for higher pressures and near saturation the error may be twice as much. By interpolation the corrective factor may be obtained with precision for all conditions.

Knoblauch attributes to his equation a probable error of 0.2 of a per cent within the range of his experiments which extends from 100° C. to 180° C., and to about 50° C. of superheating. It has been shown that a special treatment of his experimental values extrapolated to saturation shows at no place a greater discrepancy from the tabular values of Table III than 0.2 of a per cent. His equation when applied to saturated steam is nearly as good, the maximum discrepancy within his

^{*} Mitteilungen über Forschungsarbeiten, Heft 21, S. 33, 1905.

range being one-third of a per cent at 160° C. Below boiling-point the greatest discrepancy of his equation is half a per cent at 50° C.; toward freezing-point the discrepancy decreases to zero.

Specific Heat of Superheated Steam. — A very laborious investigation of the specific heat of superheated steam was made by Professor Knoblauch * and Dr. Jakob with the special object of avoiding the presence of moisture in the steam near saturation.

Professor Knoblauch's report gives the results of the investigations made, under his direction in the form of a table giving specific heats at various temperatures and pressures and in a diagram, which can be found in the original memoir, and he also gives a table of mean specific heats from the temperature of saturation to various temperatures at several pressures. This latter table is given here in both the metric system and in the English system of units.

SPECIFIC HEAT OF SUPERHEATED STEAM.

Knoblauch and Jakob.

p Kg. per Sq. Cm.p Lbs. per Sq. In.ts Cent.		1	2	4	6	8	10	12	14	16	18	20
		14.2	28.4					170.6			156.0	
te Fah		99°	120°	143°								211°
v u		210°	248°	289°	316°	336°	350°	368°	381°	392°	403°	412°
Fahr.	Cent.			1			ŀ					
212°	100°	0.463										
302°	150°	0.462	0.478	0.515								
392°	· 200°	0.462	0.475	0.502	0.530	0.560	0.597	0.635	0.677			
482°	250°	0.463	0.474	0.495	0.514	0.532	0.552	0.570	0.588	0.609	0.635	0.60
572°	300°	0.464	0.475	0.492	0.505	0.517	0.530	0.541	0.550	0.561	0.572	0.58
662°	350°	0.468	0.477	0.492	0.503	0.512	0.522	0.529	0.536	0.543	0.550	0.5
752°	400°	0.473	0.481	0.494	0.504	0.512	0.520	0.526	0.531	0.537	0.542	0.54

The construction of this table is readily understood from the following example: — Required the heat needed to superheat a kilogram of steam at 4 kilograms per square centimetre from saturation to 300° C. The saturation temperature (to the nearest degree) is 143° C.; so that the steam at 300 degrees is superheated 157 degrees, and for this is required the heat

157 × 0.492 = 77.2 calories.

The experiments of Professor Knoblauch were made at 2, 4, 6, and 8 kilograms per square centimetre; the remainder of the table was obtained

^{*} Mitteilungen über Forschungsarbeiten, Heft 36, s. 100.

from his diagram, which was extended graphically to the extent indicated. Within the limits of the experimental work the table may be used with confidence, the greatest error being probably not more than one-third of one per cent.

Total Heat of Superheated Steam. — In the solution of problems that arise in engineering it is convenient to use the total amount of heat required to raise one pound of water from freezing-point to the temperature of saturated steam at the given pressure and to vaporize it and to superheat it at that pressure to the given temperature. This total heat may be represented by the expression

$$H = q + r + c_p (t - t_s), (27)$$

where t is the temperature of the superheated steam, t_s is the temperature of saturated steam at the given pressure p, and q and r are the corresponding heat of the liquid and heat of vaporization. The mean specific heat c_p may usually be taken from the table on page 25 without interpolation, as a small variation does not have a very large effect.

The total heats or heat contents of superheated steam in the temperature-entropy table were obtained by the following method. Professor Knoblauch's table of true specific heats as given in his report a diagram was drawn with degrees of superheating for abscissæ and true specific heats as ordinates; this diagram (which was substantially equivalent to Knoblauch's diagram) consisted of curves, which gave the specific heats at various constant pressures from I kilogram per square centimetre to 20 kilograms. His tabular values were taken directly for pressures from 1 kilogram to 10 kilograms, and the resultant diagram was faired by cross-curves, which were also used to extrapolate curves below I kilogram and above IO kilograms; but in this extrapolation attention was given to his extrapolation, substantially the same results being obtained except near saturation for higher pressures. diagram constructed, (which was better adapted for extension to saturation than Knoblauch's), indicated, at high pressure, the selection of smaller values of the specific heat at saturation, and there is reason to think that such values are more correct. The difference for pressures below 10 kilograms per square centimetre (140 pounds per square inch) in the resultant total heat computed by equation (27) is insignificant.

At 20 kilograms (280 pounds) the difference amounts to one thermal unit out of about 1200.

The diagram described furnished the basis of a diagram from which the heat required to superheat the steam at a given pressure and to a given degree could be obtained graphically for English units. Having values of the third term in equation (27) the total heat was readily obtained.

Entropy of Superheated Steam. — By the entropy of superheated steam is meant the increase of entropy due to heating water from freezing-point to the temperature of saturated steam at the given pressure, to the vaporization and to the superheating at that pressure. This operation may be represented as follows:

$$\theta + \frac{r}{T_s} + \int_{T_s}^{T} \frac{c_p dt}{T},$$

in which T is the absolute temperature of the superheated steam and T_s is the temperature of the saturated steam at the given pressure; θ and $\frac{r}{T}$ can be taken from Table I. The last term was obtained for the temperature-entropy table by graphical integration of curves plotted with values of $\frac{c_p}{T}$ derived from the curves of specific heats at various temperatures just described under the previous section.

Properties of Ammonia and Sulphur Dioxide. — One of the most interesting and important applications of the theory of superheated vapors is found in the approximate calculation of properties of certain volatile liquids which are used in refrigerating-machines, and for which we have not sufficient experimental data to construct tables in the manner followed for the fluids already discussed.

All attempts in this line have followed the example of Ledoux, who made the first attempt and who took for the basis of his investigations the form of equation proposed by Zeuner for superheated steam, namely, $bv = BT - Cp^a.$

Investigations by Knoblauch already discussed show that this equation can be considered only a crude approximation for steam, and consequently less confidence can be placed on investigations by its aid than we formerly thought. Nevertheless, in our present condition and until

more complete experimental data are available we are constrained to use some such approximate method, and it does not appear profitable to recompute tables at this time.

Fortunately Regnault determined the relation of temperature and pressure, and gave the following equations for pressure in millimetres of mercury, the temperature being on the Centigrade thermometer.

SULPHUR DIOXIDE.	AMMONIA.
$\log p = a - b\alpha^n - c\beta^n$	$\log p = a - b\alpha^n - c\beta^n$
a = 5.6663790	a = 11.5043330
b = 3.0146890	b = 7.4503520
c = 0.1465400	c = 0.9499674
$\log \alpha = 9.9972989 - 10$	$\log \alpha = 9.9996014 - 10$
$\log \beta = 9.9872900 - 10$	$\log \beta = 9.9939729 - 10$
n = t + 28	n = t + 22
Limits, $-28, +62$.	Limits, -22 , $+82$.

The corresponding equations for pressures in pounds per square inch for temperatures Fahrenheit are:

SULPHUR DIOXIDE.	AMMONIA.
$\log p = a - b\alpha^n - c\beta^n$	$\log p = a - b\alpha^n - c\beta^n$
a = 3.9527847	a = 9.7907380
$\log b = 0.4792425$	$\log b = 0.8721769 - 10$
$\log c = 9.1659562 - 10$	$\log c = 9.9777087 - 10$
$\log \alpha = 9.9984994 - 10$	$\log \alpha = 9.9997786 - 10$
$\log \beta = 9.99293890 - 10$	$\log \beta = 9.9966516 - 10$
$n = t + 18^{\circ}.4 \text{ F}.$	$n = t + 7^{\circ}.6 \text{ F}.$

In the "Thermodynamics of the Steam Engine" by the author, pages 117 to 126, this calculation has been carried out with the best ascertained properties of the superheated vapors of sulphur dioxide and ammonia with the following results:

SULPHUR DIOXIDE. AMMONIA. French units,
$$pv = 14.5 T - 48 p^{0.22}$$
; $pv = 54.3 T - 142 p_{\frac{1}{4}}$ English units, $pv = 26.4 T - 184 p^{0.22}$; $pv = 99 T - 710 p_{\frac{1}{4}}$

The application of these equations to the vapors when saturated gives the following results:

HEAT OF VAPORIZATION.

SULPHUR DIOXIDE.	AMMONIA.
French units, $r = 98 - 0.27t$	r = 300 - 0.8t
English units, $r = 176 - 0.27 (t - 32)$	r = 540 - 0.8(t - 32)

SPECIFIC HEAT OF THE LIQUID.

SULPHUR DIOXIDE. AMMONIA. c = 0.4 c = 1.1

Tables X and XI were calculated by aid of the equations written, and may be of use for approximate calculations, in default of more reliable tables.

Other Data. — For convenience the following data are assembled:—

Length of the metre in inches.....

Bength of the metre in menes	••• 39•3/•								
Weight of the kilogram in pounds	2.2046.								
Weight of 1 litre (1 cubic decimetre) of mercury	y 13.5959 kilos.								
One horsepower, in foot-pounds per second 550.									
Cheval à vapeur, in kilogrammetres per second 75.									
Normal pressure of the atmosphere	760 mm. of mercury.								
	10,333 kilos per sq. m.								
Normal pressure of the atmosphere	14.7 lbs. per sq. in.								
	2116 lbs. per sq. ft.								
	29.921 in. of mercury.								
One inch of mercury is equivalent to	0.4912 pound.								
Absolute temperature of freezing point	∫273° C.								
Absolute temperature of freezing-point	1 491°.5 F .								
Machanical assistant of host I	427 metre-kilograms.								
Mechanical equivalent of heat $\frac{1}{A}$	778 foot-pounds.								

Explanation of Tables. — Table I gives the properties of saturated steam for each degree Fahrenheit, in English units. It is in part computed directly and in part derived from Table III by interpolation, but the interpolation was so guarded that the numerical accuracy is the same as would be possible by direct computation. The proper degree of precision to be attributed to any property may be judged from the

preceding statements of data and transformation. In general, attention is given to this matter, each property being stated with the precision considered proper, avoiding superfluous figures. Exceptions are found in the cases of r, p and $\frac{r}{T}$, which are sometimes given to five places, while the data do not warrant more than four; but there are practical conveniences in keeping one decimal place for those properties.

Table II, which gives properties of steam for each pound pressure, is made by interpolation from Table I, the interpolation being so done that it has practically the same degree of accuracy.

Table III is the fundamental table because the pressures are quoted directly from the original authorities. These pressures in millimetres of mercury are directly converted into kilograms per square centimetre and into pounds per square inch. They also serve as the basis of computation of specific volumes which were computed both in cubic metres and in cubic feet. The degree of precision of interpolation for pressures at each degree Fahrenheit was readily made greater than that required in practice, and the degree of precision for volumes was quite as good as the data warranted. Consequently all these tables have the same degree of reliability.

This table gives properties for each degree Centigrade both in French and in English units, which frequently is of direct convenience. It also serves as a conversion table.

Tables IV to IX were taken from Zeuner's "Mechanische Wärmetheorie," making a correction for the true value of the mechanical equivalent of heat, instead of Joule's earlier value, and adding columns of entropy of the liquid.

Tables X and XI for sulphur dioxide and ammonia were calculated by the approximate method described earlier; though open to a considerable degree of error they may be used till better information can be obtained.

Tables XII and XIII do not appear to call for comment.

Table XIV has been computed to aid in reducing data from tests where pressures are recorded in inches of mercury. Pressures measured in inches of mercury are usually less than that of the atmosphere, and the reading gives the vacuum, which is to be subtracted from the barometric reading to find the absolute pressure in inches of mercury. The table then gives the pressure in pounds per square inch, which can be taken to Table II to find the properties of steam.

Table XV has been computed to reduce the labor of calculating the volume of superheated steam. It gives the value of the factor

$$\frac{150,300,000}{T^3}$$
 - 0.0833

in Knoblauch's equation on page 24 for English units. By aid of this table the volume for a given temperature and pressure can be readily computed. The inverse calculation assuming the volume cannot be made directly, but such problems can be resolved by trial without much labor. If the pressure and volume are assumed the temperature can be found neglecting the correction term, and this will enable us to enter the table at nearly the right place.

TEMPERATURE-ENTROPY TABLE.

This table has been made to facilitate the solution of problems involving adiabatic action for steam and some other problems.

It gives for each degree Fahrenheit and for each hundredth of a unit of entropy the quality, heat contents, and specific volume, both for moist and for superheated steam. For convenience the pressures corresponding to the temperatures are also given.

The properties named may be more exactly stated as follows: -

Moist Steam.

Quality, x; the portion of a pound which is steam. Heat contents, xr + q. Specific volume, $v = xu + \sigma$.

Superheated Steam.

Quality, $t - t_{sat}$; the number of degrees of superheating. Heat contents, $r + q + c_p (t - t_{sat})$.

Specific volume, v.

The table is arranged in groups of eight triple columns, four on each of two pages, which face each other. Such a group is continued from the highest to the lowest temperature; then comes the next group of eight triple columns, etc. Commonly the solution of a given problem may be found in a single group or in two successive groups. It is important to note this feature of arrangement to avoid aimless search.

For engineering purposes it will be found sufficient to take the nearest temperature of saturated steam and the nearest column of entropy, and to take from the corresponding place in the table the required quantities. At the highest temperature (420° F.), the variation of half a degree of temperature corresponds to a variation of a pound and a half in pressure; the other properties have the following variations: heat contents 0.15 of a B.T.U., and specific volume 0.008 of a cubic foot, which latter amounts to half of one per cent. At lower temperature the variation of pressure is progressively less, but the other two properties named are affected to about the same degree. Such variations if they were carried into computations and united with others in such a way as to occasion greater uncertainties would be liable to be inconvenient; but when found in the final results of computations and their limits known, are not likely to cause trouble.

On the other hand the variation of half a hundredth of a unit of entropy will at 400 degrees correspond to 0.5 of a per cent of priming or moisture in the steam, and will carry a like variation into all of the work. This uncertainty of using the table without interpolation will be nearly the same throughout the table.

Should the variations named be considered to be too large in any case, greater accuracy can be had by interpolation. Direct interpolation for temperature or for entropy can be made with facility; cross-interpolation will be somewhat more troublesome.

The use of the tables can best be illustrated by a few examples.

Example 1. — Given the pressure by the gauge 150.3 pounds (165 absolute) and the priming 2.0 per cent (x = 0.980), to find the entropy, heat contents, and specific volume. This condition is found most nearly on page 80 and gives

$$\phi = 1.54$$
 $xr + q = 1176.8$ $v = 2.697$.

Example 2. — Given the pressure 150.3 pounds by the gauge and the temperature 508° F., to find the entropy, heat contents, and specific volume. The temperature of saturated steam corresponding to 165 pounds absolute is 366° F and the superheating is 142°. These conditions are found on page 95 and give

$$\phi = 1.65$$
 $r + q + c_p (t - t_s) = 1273.3$ $v = 3.396$.

Example 3.—Required the amount of heat changed into work per pound of steam for Rankine's cycle, the initial pressure being 150.3 pounds

by the gauge and the exhaust being under a vacuum of 26 inches of mercury. The steam initially has 1.0 per cent of priming, and the barometer stands at 30 inches of mercury.

The exhaust pressure is 4 inches of mercury, which by Table XIV corresponds to 1.96 pound. The initial absolute pressure is found by adding the equivalent of 30 inches of mercury or

The solution of this problem is found in the column for entropy 1.55.

Example 4. — Required the velocity of discharge from a nozzle which takes steam at 150.3 pounds by the gauge and expands down to 26 inches of vacuum; the initial priming being .o1 and the barometer being at 30 inches.

The available heat is the same as that for the previous problem, namely, 285.9 B.T.U. for an adiabatic expansion. The velocity without friction would be

$$V = \sqrt{2 \times 32.2 \times 778 \times 285.9} = 3786.$$

If an allowance of ten per cent can be made for friction the velocity will be

$$V = \sqrt{2 \times 32.2 \times 778 \times 0.90 \times 285.9} = 3590.$$

The specific volume at exit can be found as follows: The heat that would be changed into work with an allowance of ten per cent for friction will be

$$0.90 \times 285.9 = 257.2$$
 B.T.U.

Subtracting from the initial heat contents leaves

$$1185 - 257 = 928 B.T.U.$$

for the heat contents at 126° F. at the discharge, and this property is found for the entropy 1.60; the corresponding specific volume is 142 cubic feet.

Example 5. — Suppose that the conditions of example 3 are applied to a steam-turbine which has four pressure stages. For adiabatic expansion the available heat per stage will be

$$285.9 \div 4 = 71.4 \text{ B.T.U.}$$

This quantity may be subtracted four times successively from the initial heat contents and the results will be the heat contents for the intermediate and final pressures. All the properties are to be located in the columns for entropy 1.55. The results are as follows:—

	INITIAL STAGE.	SECOND STAGE.	THIRD STAGE.	FOURTH STAGE.	DISCHARGE.
Heat contents Temperatures	1185.0 366	1113.5 299	1042.1 237	970.6 180	899.1 126
Pressures	165	66.0	23.4	7-51	1.99

A full discussion of this method with allowance for friction and other losses together with its limitations will be found in the author's *Thermodynamics of the Steam Engine*.

TABLE I.

SATURATED STEAM.

ENGLISH UNITS.

Temperature, Degrees Fahrenheit.	Pressure, Pounds per Square Inch.	Heat of the Liquid.	Heat of Vap- orization.	Heat Equiva- lent of Inter- nal Work.	Heat Equiva- lent of Exter- nal Work,	Entropy of the Liquid.	Entropy of Vaporiza-tion.	Specific Volume, Cubic Feet per Pound.	Density, Pounds per Cubic Foot.	Temperature, Degrees Fahrenheit.
l t	p p	q q	т , т	" 1°	Apu	Š	$\frac{r}{T}$	V.	$\frac{1}{s}$	E t
32 33 34	0.0886 37 0.0923 37 0.0960 39	0.0 1.0 2.0	1071.7 1071.2 1070.7	1017.5 1016.9 1016.3	54.2 54.3 54.4	0.0000 0.0021 0.0041	2.1804 2.1749	3308 ₁₂₉ 3179 ₁₁₇ 3062 ₁₁₂	$\begin{smallmatrix} 0.000302_{13} \\ 0.000315_{12} \\ 0.000327_{12} \\ \end{smallmatrix}$	32 33 34
35 36 37	$\begin{array}{c} 0.0999 \\ 0.1040 \\ 0.1082 \\ 44 \end{array}$	4.0	1070.2 1069.7 1069.2	1015.0	54.6 54.7 54.8	0.0061 0.0082 0.0102	2.1588	2950 2842108 2737105 2737103	$\begin{smallmatrix} 0.000339\\ 0.00035213\\ 0.00036514 \end{smallmatrix}$	35 36 37
38 39 40	$\begin{array}{c} 0.1126 \\ 0.1171 \\ 0.1217 \\ 46 \\ 48 \end{array}$	7.1	1068.7 1068.2 1067.6	1013.2	54.9 55.0 55.1	0.0122 0.0142 0.0163	2.1427	2634 ₉₆ 2538 ₉₂ 2446 ₈₈	$\begin{array}{c} 0.000379\\ 0.00039415\\ 0.00040915\\ \end{array}$	38 39 40
41 42 43	0.1265 0.1315 0.1367 52 0.1367	10.1	1067.1 1066.6 1066.0	1011.3	55.2 55.3 55.4.	0.0183 0.0203 0.0223	2.1267	2358 227286 219082	$\begin{smallmatrix} 0.000424 \\ 0.000440 \\ 16 \\ 0.000457 \\ 17 \end{smallmatrix}$	41 42 43
44 45 46	0.1421 0.1476 55 0.1533 58	13.1	1065.5 1065.0 1064.4	1009.4	55.5 55.6 55.7	0.0243 0.0262 0.0282	2.1109	2110 ₇₅ 203572 1963 ₆₉	$\substack{0.000474\\0.00049117\\0.00050919}$	44 45 46
47 48 49	0.1591 0.1652 61 0.1715 63	16.1	1063.9 1063.4 1062.8	1007.5	55.8 55.9 56.0	0.0302 0.0322 0.0342	2.0954	1894 182864 176461	$\begin{array}{c} 0.000528 \\ 0.000547 \\ 0.000567 \\ 20 \end{array}$	47 48 49
50 51 52	0.1780 0.1848 68 0.1918 70	19.1	1062.3 1061.8 1061.3	1005.6	56.2	0.0361 0.0381 0.0401	2.0799	1703 1643 57 1586 55	$\begin{smallmatrix} 0.000587_{21} \\ 0.000608_{22} \\ 0.000630_{23}^{22} \end{smallmatrix}$	50 51 52
53 54 55	0.1990 0.2064 76 0.2140 79	22.1	1060.7 1060.2 1059.7	1003.7	56.5	0.0420 0.0440 0.0459	2.0647	1531 147950 142948	$\begin{smallmatrix} 0.000653_{23} \\ 0.000676_{24} \\ 0.000700_{24}^{24} \end{smallmatrix}$	53 54 55
56 57 58	0.2219 0.2301 82 0.2385 84	25.1	1059.1 1058.6 1058.1	1001.7	56.9	0.0479 0.0498 0.0517	2.0496	1381 133544 129143	$\begin{array}{c} 0.000724 \\ 0.00074925 \\ 0.00077526 \end{array}$	56 57 58
59 60 61	0.2471 90 0.2561 93 0.2654 96	28.1	1057.6 1057.0 1056.5	1000.5 999.8 999.2	57.2	0.0537 0.0556 0.0575	2.0347	1248 120740 1167 ₃₉	$\begin{array}{c} 0.000801_{27} \\ 0.000828_{29} \\ 0.000857_{30} \end{array}$	59 60 61
62 63	0.2750 0.2848 ₁₀₁		1056.0 1055.5	998.6 998.0		0.0594 0.0614		1128 ₃₇ 1091 ₃₅	$\substack{0.000887\\0.00091730\\.}$	62 63

_									
Temperature, Degrees Fahrenheit.	Pressure, Pounds per Square Inch.	Liquid. Liquid. Heat of Vaporization.	Heat Equiva- lent of Inter- nal Work.	Heat Equiva- de lent of Exter- nal Work.	Entropy of the Liquid.	Entropy of Vaporisa-tion.	Specific Vol- ume, Cubic Feet per Pound.	Density, Pounds per Cubic Foot.	Temperature, Degrees Fahrenheit.
1	p	q r		pu	ľ	$ar{m{T}}$			
	0.2949 ₁₀₅ 0.3054 ₁₀₇ 0.3161 ₁₁₁	32.1 1055.0 33.1 1054.4 34.1 1053.9	996.7	57.6 57.7 57.8	0.0633 0.0652 0.0671	2.0152 2.0103 2.0055		0.000947 ₃₂ 0.000979 ₃₃ 0.001012 ₃₄	
67 68 69	$\substack{0.3272\\0.3386114\\0.3505122}$	35.1 1053.4 36.1 1052.8 37.1 1052.3	994.8	57.9 58.0 58.1	0.0690 0.0709 0.0728		956 ₃₁ 925 ₂₉ 896 ₂₈	$\begin{array}{c} 0.001046_{35} \\ 0.001081_{35} \\ 0.001116_{36} \end{array}$	67 68 69
70 71 72	$\substack{0.3627\\0.3752125\\0.3879127\\0.3879133}$	38.1 1051.8 39.1 1051.2 40.1 1050.7	992.9		0.0747 0.0766 0.0784	1.9816	868 ₂₈ 840 ₂₇ 813 ₂₅	$\substack{0.001152\\0.001190\\40\\0.001230\\39}$	70 71 72
73 74 75	$\substack{0.4012\\0.4149137\\0.4289140\\145}$	41.1 1050.2 42.1 1049.7 43.1 1049.2	991.1	58.5 58.6 58.7	0.0803 0.0822 0.0841	1.9675	$788_{25} \\ 763_{24} \\ 739_{22}$	$\begin{array}{c} 0.001269_{\displaystyle 42} \\ 0.001311_{\displaystyle 42} \\ 0.001353_{\displaystyle 42} \end{array}$	73 7 <u>4</u> 75
76 77 78	$\substack{0.4434\\0.4582148\\0.4736154\\0.4736158}$	44.1 1048.7 45.1 1048.1 46.1 1047.6	989.1		0.0859 0.0878 0.0896	1.9536	$\begin{array}{c} 717 \\ 695 \\ 21 \\ 674 \\ 20 \end{array}$	0.001395 ₄₄ 0.00143945 0.001484 ₄₅	76 77 78
79 80 81	$\substack{0.4894\\0.5056167\\0.5223172}$	47.1 1047.1 48.1 1946.5 49.1 1046.0		59.2 59.3 59.4	0.0915 0.0934 0.0952	1.9398	654 ₂₀ , 634 ₁₉ 615 ₁₉	$\begin{array}{c} 0.001529_{\cdot{48}} \\ 0.001577_{\cdot{49}} \\ 0.001626_{\cdot{52}} \end{array}$	79 80- 81
82 83 84	$\substack{0.5395\\0.5572182\\0.5754188}$	50.1 1045.4 51.1 1044.9 52.1 1044.4	985.3	59.5 59.6 59.7	0.0971 0.0989 0.1007	1.9261	596 ₁₈ 578 ₁₇ 561 ₁₇	0.001678 ₅₂ 0.00173053 0.001783 ₅₅	82 83 84
	$\substack{0.5942\\0.6134192\\0.6332}_{203}$	53.1 1043.9 54.1 1043.3 55.1 1042.8	983.4	59.8 59.9 60.0	0.1026 0.1044 0.1062	1.9126		$\begin{array}{c} 0.001838 \\ 0.00189456 \\ 0.00195058 \end{array}$	85 86 87
90	$\substack{0.6535\\0.6745210\\0.6960221}$	56.1 1042.3 57.1 1041.7 58.1 1041.2	981.5	60.1 60.2 60.3	0.1081 0.1099 0.1117		138		88 89 90
	$\substack{0.7181\\0.7408227\\0.7642240}$	59.1 1040.6 60.1 1040.1 61.1 1039.5	979.6	60.5	0.1135 0.1153 0.1171	1.8859		$\begin{array}{c} 0.002196\\ 0.00226268\\ 0.002330 \\ 70 \end{array}$	91 92 93
"	$\substack{0.7882\\0.8128246\\0.8381253\\0.8381259}$	62.1 1039.0 63.1 1038.5 64.1 1037.9	977.7	60.7 60.8 60.9	0.1189 0.1207 0.1225	1.8728		$\substack{0.002400\\0.00247072\\0.00254275}$	9 <u>4</u> 95 96
	$\substack{0.8640 \\ 0.8907267 \\ 0.9180281}$	65.0 1037.4 66.0 1036.8 67.0 1036.3	975.7	61.1	0.1243 0.1261 0.1279	1.8597	$382.1_{108} \\ 371.3_{104} \\ 360.9_{101} $	$\substack{0.002617_{76}\\0.002693_{78}\\0.002771_{80}}$	97 98 99
100 101 102	$\substack{0.9461\\0.9751290\\1.0047304}$	68.0 1035.7 69.0 1035.1 70.0 1034.6	973.7	61.4	0.1297 0.1314 0.1332	1.8468	$350.8_{97} \\ 341.1_{95} \\ 331.6_{92}$	$\substack{0.002851\\0.00293284\\0.00301686}$	100 101 102
103 104	$1.0351_{312} \\ 1.0663_{322}$	71.0 72.0 1033.5			0.1350 0.1368		322.4 ₈₉ 313.5 ₈₇	$\substack{0.003102_{88}\\0.003190_{91}}$	103 104

							,			
Temperature, Degrees Fahrenheit.	Pressure, Pounds per Square Inch.	Heat of the Liquid.	Heat of Vaporization.	Heat Equiva- lent of Inter- nal Work.	Heat Equiva-	Entropy of the Liquid.	Entropy of Vaporiza-	Specific Volume, Cubic Feet per Pound.	Density, Pounds per Cubic Foot,	Temperature, Degrees Fahrenheit.
105 106 107	1.098 ₃₃ 1.131 ₃₄ 1.165 ₃₅	74.0	1032.9 1032.4 1031.8	971.0 970.4 969.7	61.9 62.0 62.1	0.1385 0.1403 0.1421	1.8256	304.8 ₈₄ 296.4 ₈₂ 288.2 ₈₀	0.003281 0.003374 93 0.003470 99	105 106 107
108 109 110	1.200 ₃₅ 1.235 ₃₆ 1.271 ₃₇	77.0	1031.2 1030.7 1030.1	969.0 968.4 967.7	62.2 62.3 62.4	0.1438 0.1456 0.1473	1.8130		0.003569 0.003668 0.003771 105	108 109 110
111 112 113	1.308 ₃₉ 1.347 ₃₉ 1.386 ₄₀	80.0	1029.6 1029.0 1028.4	967.1 966.4 965.7	62.5 62.6 62.7	0.1491 0.1508 0.1526	1.8005	258.0 251.167 244.464	0.003876 0.003983107 0.004092	111 112 113
114 115 116	$1.426 \\ 1.46742 \\ 1.50943$	83.0	1027.8 1027.2 1026.7	965.0 964.3 963.7	62.8 62.9 63.0	0.1543 0.1560 0.1578	1.7881		$\substack{0.004202\\0.004314112\\0.004430120}$	
117 118 119	1.552 1.59745 1.64247	86.0	1026.1 1025.5 1025.0	963.0 962.3 961.7	63.1 63.2 63.3	0.1595 0.1612 0.1630	1.7758	219:8 214:058 208:456	$\substack{0.004550\\0.004673\\125\\0.004798\\128}$	117 118 119
120 121 122	1.689 1.73748 1.78550	89.0	1024.4 1023.8 1023.2	961.0 960.2 959.5	63.4 63.6 63.7	0.1647 0.1664 0.1682	1.7637		$\substack{0.004926\\0.00506\\13\\0.00519}$	120 121 122
123 124 125	1.835_{51} 1.886_{52} 1.938_{64}	92.0	1022.7 1022.1 1021.5	958.9 958.2 957.5	63.8 63.9 64.0	0.1699 0.1716 0.1733	1.7517		0.00533 0.00547 14 0.00561	123 124 125
126 127 128	$\substack{1.992\\2.04755\\2.10356\\2.10358}$	95.0	1021.0 1020.4 1019.8	956.9 956.2 955.5	64.2	0.1750 0.1767 0.1784	1.7398		$\begin{array}{c} 0.00575 \\ 0.0059015 \\ 0.0060516 \end{array}$	126 127 128
129 130 131	$\substack{2.161\\2.220\\2.280\\61}$	98.0	1019.3 1018.7 1018.1	954.9 954.2 953.5	64.5	0.1801 0.1818 0.1835	1.7281		0.00621 0.0063716 0.0065316	129 130 131
132 133 134	2.341 ₆₂ 2.40364 2.46766	100.0 101.0 102.0	1017.0	952.9 952.2 951.6	64.8 64.9	0.1852 0.1869 0.1886	1.7165 1.7127		$\begin{bmatrix} 0.00669 \\ 0.00686 \\ 17 \\ 0.00703 \\ 17 \end{bmatrix}$	132 133 134
135 136 137	2.533 ₆₇ 2.600 ₆₉ .2.669 ₇₁	104.0	1015.9 1015.4 1014.8	950.9 950.3 949.6	65.1	0.1902 0.1919 0.1936	1.7050		$\begin{bmatrix} 0.00720 \\ 0.0073818 \\ 0.0075719 \\ 0.0075719 \end{bmatrix}$	135 136 137
138 139 140	2.740 ₇₂ 2.81273 2.885 ₇₅	106.0 107.0 108.0	1013.6	948.9 948.2 947.5	65.4	0.1952 0.1969 0.1986	l . 6936		0.00776 ₁₉ 0.00795 ₁₉ 0.00814 ₂₀	138 139 140
141 142 143	2.960 ₇₇ 3.037 ₇₉ 3.116 ₈₀	109.0 110.0 111.0	1011.9	946.8 946.1 945.5	65.8	0.2002 0.2019 0.2036	. 6823	27	0.00834 ₂₀ 0.00854 ₂₁ 0.00875 ₂₁	141 142 143
144 145	3.196 ₈₂ 3.278 ₈₃	112.0 113.0		944.8 944.1		0.2052 0.2069		111.6 ₂₆ 109.0 ₂₅	$0.00896_{21} \\ 0.00917_{22}$	144 145

Temperature, Degrees Fahrenheit.	Pressure, Pounds per Square Inch.	Heat of the Liquid. Heat of Vaporization.	Heat Equiva- lent of Inter- nal Work.	Heat Equiva- lent of Exter- nal Work.	Entropy of the Liquid	Entropy of Vaporiza-tion.	Specific Vol- ume, Cubic Feet per Pound.	Density,	Temperature, Degrees Fahrenheit,
<i>t</i> ,		q r		Apu	θ	T	8 .	8	1
146 147 148	3.361 3.447 3.535 89	114.0 1009. 115.0 1009. 116.0 1008.	0 942.7	66.3	0.2085 0.2102 0.2118	1.6636	104.0 24	0.00939 ₂₂ 0.00961 ₂₃ 0.00984 ₂₄	146 147 148
149 150 151	$3.624_{91} \ 3.715_{93} \ 3.808_{95}$	117.0 1007. 118.0 1007. 119.0 1006.	2 940.6		0.2135 0.2151 0.2168	1.6526	96.9 23	$\begin{array}{c} 0.01008_{24} \\ 0.01032_{24} \\ 0.01056_{25} \end{array}$	149 150 151
152 153 15 4	$3.903_{97} \\ 4.000_{99} \\ 4.099_{101}$	120.0 1006. 121.0 1005. 122.0 1004.	5 938.6	66.8 66.9 67.0	0.2184 0.2200 0.2217	1.6416	92.5 90.4 20 88.4 20	$\begin{array}{c} 0.01081_{25} \\ 0.01106_{25} \\ 0.01131_{26} \end{array}$	152 153 154
155 156 157	4.200 4.303106 4.409108	123.0 1004. 124.0 1003. 125.0 1003.	7 936.5	67.1 67.2 67.3	0.2233 0.2249 0.2265	1.6307	19	$\begin{array}{c} 0.01157 \\ 0.01183 \\ 28 \\ 0.01211 \\ 28 \end{array}$	155 156 157
158 159 160	4.517 4.626112 4.738114	126.0 1002. 127.0 1002. 128.0 1001.	934.4	67.4 67.6 67.7	0.2282 0.2298 0.2314	1.6200	11.2 18	$\begin{array}{c} 0.01239_{28} \\ 0.01267_{29} \\ 0.01296_{30} \end{array}$	158 159 160
161 162 163	$\substack{4.852\\4.969117\\5.088119\\5.088122}$	129.0 1000. 130.0 1000. 131.0 999.	932.3	67.8 67.9 68.0	0.2330 0.2347 0.2363	1.6093		$\begin{array}{c} 0.01326_{31} \\ 0.01357_{30} \\ 0.01387_{30} \end{array}$	161 162 163
164 165 166	$\substack{5.210 \\ 5.334124 \\ 5.460129}$	132.0 999. 133.0 998. 134.0 997.	4 930.2	68.1 68.2 68.3	0.2379 0.2395 0.2411	1.5988	70.6 69.1 15 67.7 14	$\begin{array}{c} 0.01417_{30} \\ 0.01447_{30} \\ 0.01477_{33} \end{array}$	164 165 166
167 168 169	5.589 5.720131 5.853137	135.0 997. 136.0 996. 137.0 996.	7 928.2	68.5	0.2427 0.2443 0.2459	1.5884	66.2 64.8 14 63.4 14	$\begin{array}{c} 0.01510_{33} \\ 0.01543_{34} \\ 0.01577_{36} \end{array}$	167 168 169
170 171 172	$\substack{5.990\\6.129\\141\\6.270\\145}$	138.0 995. 139.0 994. 140.0 994.	926.1	68.7 68.8 68.9	0.2475 0.2491 0.2506	1.5780	12	0.01613 ₃₇ 0.0165036 0.0168636	170 171 172
173 174 175	$\substack{6.415\\6.563148\\6.714\\154}$	141.0 993. 142.0 993. 143.0 992.	1 924.0	69.1	0.2522 0.2538 0.2554	1.5677	12	$\begin{array}{c} 0.01722_{36} \\ 0.01758_{37} \\ 0.01795_{39} \end{array}$	173 174 175
176 177 178	$\substack{6.868\\7.025\\160\\7.185\\161}$	144.0 991. 145.0 991. 146.0 990.	921.9	69.3 69.4 69.5	0.2570 0.2585 0.2601	1.5575		$\begin{array}{c} 0.01834_{39} \\ 0.01873_{39} \\ 0.01912_{41} \end{array}$	176 177 178
179 180 181	$\substack{7.346\\7.510\\168\\7.678\\171}$	147.0 990. 148.0 989. 149.0 988.	919.8	69.7	0.2617 0.2633 0.2648	1.5474	$51.2 \atop 50.2 \atop 107 \atop 49.13 \atop 102$	$\begin{array}{c} 0.01953_{40} \\ 0.01993_{42} \\ 0.02035_{43} \end{array}$	179 180 181
182 183 184	7.849 8.024175 8.202181	150.1 988. 151.1 987. 152.1 987.	7 917.7	70.0	0.2664 0.2680 0.2696	1.5373	$\begin{array}{c} 48.11_{99} \\ 47.12_{95} \\ 46.17_{94} \end{array}$	$\begin{array}{c} 0.02078_{44} \\ 0.02122_{44} \\ 0.02166_{45} \end{array}$	182 183 184
185 186	8.383 ₁₈₅ 8.568 ₁₈₈	153.1 986. 154.1 985.			0.2711 0.2727		45.23 ₉₀ 44.33 ₈₈	$0.02211_{45} \\ 0.02256_{45}$	185 186

Temperature, Degrees Fahrenheit.	ure, inds per iare h.	of the uid.	Heat of Vap-	t of Inter- Work.	Heat Equiva- lent of Exter- nal Work.	Entropy of the Liquid.	Entropy of Vaporiza-tion.	fic Vol- e, Cubic et per ind.	Density, Pounds per Cubic Foot.	Temperature, Degrees Fahrenheit.
Temp Der Fal	Pressure, Pounds Square Inch.	Heat Liqu	Heat oriz	Heat lent onal V	Heat lent nal	Entro	Entro Val	Specific ume, Cu Feet Pound.	Densi Por Cul	Temp Der Fal
1	· p	q	<i>r</i>	ρ	A pu	θ	$\frac{r}{T}$		1 8	t
187 188 189	8.756 8.947191 9.141198	155.1 156.1 157.1	985.3 984.7 984.0	914.9 914.2 913.4	70.4 70.5 70.6	0.2742 0.2758 0.2773	1.5240 1.5207 1.5174	43.45 42.59 41.75 83	$\begin{array}{c} 0.02301_{47} \\ 0.02348_{47} \\ 0.02395_{49} \end{array}$	187 188 189
190 191 192	9.339 ₂₀₂ 9.541 ₂₀₅ 9.746 ₂₀₉	*158.1 159.1 160.1	983.4 982.8 982.2	912.7 912.0 911.3	70.7 70.8 70.9	0.2789 0.2805 0.2820	1.5141 1.5108 1.5076	78	$\begin{array}{c} 0.02444 \\ 0.02493 \\ 0.02544 \\ 51 \end{array}$	190 191 192
193 194 195	$\substack{9.955\\10.168213\\10.385217\\10.385220}$	161.1 162.1 163.1	981.5 980.9 980.3	910.5 909.8 909.1	71.0 71.1 71.2	0.2835 0.2851 0.2866	1.5043 1.5010 1.4978		0.02595 ₅₂ 0.02647 ₅₃ 0.02700 ₅₄	193 194 195
196 197 198	10.605 ₂₂₅ 10.830 ₂₂₉ 11.059 ₂₃₂	164.1 165.1 166.2	979.7 979.1 978.4	908.4 907.7 906.9	71.3 71.4 71.5	0.2882 0.2897 0.2912	1.4946 1.4913 1.4881		0.02754 ₅₄ 0.02808 ₅₅ 0.02863 ₅₅	196 197 198
199 200 201	11.291 ₂₃₇ 11.528240 11.768245		977.8 977.2 976.6	906.2 905.5 904.8	71.6 71.7 71.8	0.2928 0.2943 0.2958	1.4849 1.4817 1.4786		0.02918 0.0297457 0.0303158	199 200 201
202 203 204	12.013 ₂₄₈ 12.261 ₂₅₃ 12.514 ₂₅₇	170.2 171.2 172.2	976.0 975.4 974.7	904.1 903.4 902.6	71.9 72.0 72.1	0.2973 0.2989 0.3004	1.4754 1.4723 1.4691		$\begin{array}{c} 0.03089 \\ 0.0314961 \\ 0.03210 \\ 62 \end{array}$	202 203 204
205 206 207	12.771 13.033262 13.299271	173.2 174.2 175.2	972.8	901.9 901.2 900.4	72.2 72.3 72.4	0.3019 0.3034 0.3049	1.4659 1.4628 1.4596		0.03272 ₆₃ 0.03335 ₆₄ 0.03399 ₆₆	205 206 207
208 209 210	13.570 ₂₇₅ 13.845 ₂₈₀ 14.125 ₂₈₄	176.2 177.2 178.3	972.2 971.6 970.9	899.7 899.0 898.3	72.5 72.6 72.6	0.3064 0.3079 0.3095	1.4565 1.4534 1.4502		0.03465 0.0353166 0.0359767	208 209 210
211 212 213	14.409 14.698289 14.992294	179.3 180.3 181.3	970.3 969.7 969.1	897.6 896.9 896.2	72.7 72.8 72.9	0.3110 0.3125 0.3140	1.4471 1.4441 1.4410		0.03664 ₇₀ 0.03734 ₇₀ 0.03804 ₇₀	211 212 213
214 215 216	15.291 15.595304 15.903314	182.3 183.3 184.3	968.5 967.8 967.2	895.5 894.7 894.0	73.0 73.1 73.2	0.3155 0.3170 0.3185	1.4380 1.4349 1.4318		0.03874 ₇₂ 0.03946 ₇₃ 0.04019 ₇₄	214 215 216
217 218 219	16.217 16.536323 16.859329	185.3 186.3 187.4	966.5 965.9 965.2	893.2 892.5 891.7	73.3 73.4 73.5	0.3200 0.3215 0.3230	1.4287 1.4257 1.4226	$24.43_{44} \\ 23.99_{43} \\ 23.56_{42}$	0.04093 ₇₅ 0.04168 ₇₆ 0.04244 ₇₇	217 218 219
220 221 222	17.188 ₃₃₅ 17.523 ₃₄₀ 17.863 ₃₄₅	188.4 189.4 190.4	964.6 964.0 963.3	891.0 890.3 889.5	73.6 73.7 73.8	0.3244 0.3259 0.3274	1.4196 1.4165 1.4135	$23.14_{12}, 7340_{22.3340}$	0.04321 ₇₈ 0.0439979 0.04478 ₈₂	220 221 222
223 224 225	18.208 ₃₅₀ 18.558 ₃₅₆ 18.914 ₃₆₁	191.4 192.4 193.4	962.7 962.0 961.4	888.8 888.1 887.4	73.9 73.9 74.0	0.3289 0.3304 0.3319	1.4105 1.4075 1.4045	21.5439 21.5438 21.1638	0.04643 ₈₃ 0.04726 ₈₅	223 224 225
226 227	19.275 ₃₆₈ 19.643 ₃₇₃	194.4 195.4	960.7 960.1	886.6 885.9	74.1 74.2	0.3333 0.3348	1.4015 1.3985		$0.04811_{86} \\ 0.04897_{86}$	226 227

SATURATED STEAM - TABLE I.

Temperature, Degrees Fabrenheit.	Pressure, Pounds per Square Inch.	Heat of the Liquid.	Heat of Vaporization.	Heat Equiva- lent of Inter- nal Work.	Heat Equiva-	Entropy of the Liquid	Entropy of Ila Vaporisa- tion.	Specific Vol- ume, Cubic Feet per Pound.	Density,	Temperature, Degrees Fahrenheit.
							$ \overline{T} $		8	
228 229 230	$\begin{array}{c} 20.02_{38} \\ 20.40_{38} \\ 20.78_{39} \end{array}$	196.5 197.5 198.5	959.4 958.7 958.1	885.1 884.3 883.6		0.3363 0.3378 0.3392		$\begin{array}{c} 20.07_{35} \\ 19.72_{35} \\ 19.37_{33} \end{array}$	0.04983 0.0507 0.0516 9	228 229 230
231 232 233	$21.17_{40} \\ 21.57_{40} \\ 21.97_{41}$	199.5 200.5 201.5	957.4 956.8 956.1	882.8 882.1 881.3	74.6 74.7 74.8	0.3407 0.3422 0.3436		$\substack{19.04\\18.71\\32\\18.39\\31}$	$\begin{array}{c} 0.0525 & 9 \\ 0.0534 & 10 \\ 0.0544 & 9 \end{array}$	231 232 233
234 235 236	$\begin{array}{c} 22.38_{41} \\ 22.79_{42} \\ 23.21_{43} \end{array}$	202.5 203.6 204.6	955.4 954.8 954.1	880.6 879.9 879.1	74.9	0.3451 0.3466 0.3480	1.3748	$^{18.08}_{17.7731}_{17.46}_{30}$	$\begin{array}{c} 0.0553\\ 0.0563\\ 0.0573\\ 10 \end{array}$	234 235 236
237 238 239	23.64 24.08 24.52 45	205.6 206.6 207.6	953.4 952.8 952.1	878.3 877.6 876.8	75.2		1.3689 1.3660 1.3631	$17.16_{29} \\ 16.87_{28} \\ 16.59_{28} $	$\begin{array}{c} 0.0583\\ 0.059310\\ 0.060310\\ \end{array}$	237 238 239
240 241 242	24.97 25.4246 25.8847	208.6 209.6 210.7	951.4 950.8 950.1	876.0 875.4 874.6	75.4 75.4 75.5	0.3553	1.3602 1.3573 1.3544	$\substack{16.31_{27}\\16.04_{27}\\15.77_{26}}$	$0.0613\\0.062310\\0.063411\\1$	240 241 242
243 244 245	26.35 ₄₈ 26.83 ₄₈ 27.31 ₄₉	211.7 212.7 213.7	949.4 948.7 948.1	873.8 873.0 872.3	75.7	0.3596	1.3515 1.3486 1.3457	$15.51_{25} \\ 15.2625 \\ 15.0124$	$\begin{array}{c} 0.0645\\ 0.065510\\ 0.066611\\ \end{array}$	243 244 245
246 247 248	27.80 ₄₉ 28.29 ₅₀ 28.79 ₅₁	214.7 215.7 216.7	947.4 946.7 946.0	870.7	75.9 76.0 76.0	0.3639	1.3429 1.3401 1.3372	$14.77 \\ 14.52 \\ 24 \\ 14.28 \\ 23$	$ \begin{array}{c} 0.0677 \\ 0.068912 \\ 0.070011 \\ \end{array} $	246 247 248
249 250 251	29.30 ₅₂ 29.82 ₅₃ 30.35 ₅₃	217.7 218.8 219.8	945.4 944.7 944.0	869.3 868.5 867.7	76.2 76.3	0.3683	1.3343 1.3315 1.3286	$14.05_{23} \\ 13.82_{23} \\ 13.59_{22}$	$\begin{bmatrix} 0.0712 \\ 0.072412 \\ 0.073612 \\ \end{bmatrix}$	249 250 251
252 253 254	30.88 ₅₄ 31.42 ₅₅ 31.97 ₅₆	220.8 221.8 222.8	943.3 942.6 941.9	866.9 866.1 865.3	76.5	0.3726	1.3258 1.3229 1.3201	$13.37 \\ 13.1621 \\ 12.9421$	$ \begin{array}{c} 0.0748 \\ 0.076012 \\ 0.077313 \\ 0.077312 \end{array} $	252 253 254
255 256 257	32.53 ₅₆ 33.09 ₅₇ 33.66 ₅₈	223.8 224.9 225.9	941.2 940.5 939.8	864.5 863.7 863.0	76.8	0.3768	1.3173 1.3145 1.3117	$\substack{12.73 \\ 12.5320 \\ 12.3320}$	0.0785 0.079813 0.081113	255 256 257
258 259 260	34.24 ₅₉ 34.83 ₅₉ 35.42 ₆₀	226.9 227.9 229.0	939.1 938.4 937.8	862.2 861.4 860.7		[0.3811]	1.3089 1.3062 1.3034	10	0.0824 0.083713 0.085114	258 259 260
261 262 263	36.02 ₆₂ 36.64 ₆₂ 37.26 ₆₃	230.0 231.0 232.0	936.4 935.7	859.2 858.4	77.2	0.3853	1.3006 1.2978 1.2950	11.39 ¹⁸ 11.21 ¹⁷	$ \begin{array}{c} 0.0864 \\ 0.087814 \\ 0.089214 \end{array} $	261 262 263
264 265 266	37.89 38.5364 39.1766	233.0 234.0 235.0	934.3 933.6	856.8 856.0	77.5 77.6	0.3895 0.3909	1.2923 1.2895 1.2868	$10.87_{17}^{17} \\ 10.70_{17}^{17}$	$\begin{array}{c} 0.0906\\ 0.092014\\ 0.093515\\ 0.093515 \end{array}$	264 265 266
267 268	39.83 40.4966	236.1 237.1	932.9 932.1			0.3923 0.3937	1.2840 1.2813	$10.53 \\ 10.37 \\ 16$	0.0950 0.0964 <mark>14</mark>	267 268

1							1			
Temperature, Degrees Fahrenheit.	Pressure, Pounds per Square Inch.	Heat of the Liquid.	Heat of Vaporization.	Heat Equiva- lent of Inter- nal Work.	Heat Equiva- lent of Exter- nal Work.	Entropy of the Liquid.	Entropy of Vaporiza- tion.	Specific Volume, Cubic Feet per Pound.	Density, Pounds per Cubic Foot.	Temperature, Degrees Fahrenheit.
269 270 271	41.16 ₆₈ 41.84 ₇₀ 42.54 ₇₀	238.1 239.1 240.2	931.4 930.7 930.0	853.6 852.8 852.0	77.8 77.9 78.0	0.3965	1.2786 1.2758 1.2731	10.21 10.05 15 9.901 152	0.0979 ₁₆ 0.0995 ₁₅ 0.1010 ₁₆	269 270 271
272 273 274	43.24 ₇₁ 43.95 ₇₂ 44.67 ₇₂	241.2 242.2 243.2	929.3 928.6 927.9	851.3 850.5 849.7	78.0 78.1 78.2	0.4007	1.2704 1.2677 1.2650	9.749 9.599150 9.453 ₁₄₄	$\begin{array}{c} 0.1026\\ 0.104216\\ 0.105816 \end{array}$	272 273 274
275 276 277	45.39 ₇₄ 46.13 ₇₅ 46.88 ₇₆	244.2 245.3 246.3	927.2 926.5 925.7	848.9 848.1 847.3	78.3 78.4 78.4	0.4049	1.2623 1.2596 1.2569	$\substack{9.309\\9.169\\136\\9.033\\133}$	$\begin{array}{c} 0.1074 \\ 0.109017 \\ 0.110717 \end{array}$	275 276 277
278 279 280	47.64 ₇₇ 48.41 ₇₈ 49.19 ₇₉	247.3 248.3 249.4	925.0 924.3 923.6	846.5 845.7 844.9	78.5 78.6 78.7	0.4091	1.2542 1.2516 1.2489	128	$0.1124 \\ 0.114117 \\ 0.1158 \\ 17$	278 279 280
281 282 283	49.98 ₇₉ 50.77 ₈₁ 51.58 ₈₁	250.4 251.4 252.4	922.9 922.1 921.4	844.2 843.3 842.5	78.8	0.4132	1.2463 1.2436 1.2409	$\substack{8.511 \\ 8.385}_{124} \\ 8.261_{121}$	0.1175 0.1193 18 0.1211	281 282 283
284 285 286	52.39 53.2284 54.0686	253.4 254.5 255.5	920.7 920.0 919.2	841.7 841.0 840.1	79.0	0.4173	1.2383 1.2356 1.2330	8.021119	0.1229 0.124718 0.126519	284 285 286
287 288 289	54.92 ₈₆ 55.78 ₈₇ 56.65 ₈₈	256.5 257.5 258.6	918.5 917.7 917.0	839.3 838.5 837.7	79.2	0.4215	1.2304 1.2277 1.2251	7.674111 7.563111		287 288 289
290 291 292	57.53 ₈₉ 58.42 ₉₁ 59.33 ₉₁	259.6 260.6 261.6	916.3 915.5 914.8	836.9 836.0 835.3	79.5	0.4255	1.2225 1.2199 1.2173	7.454 7.347 105 7.242	$ \begin{array}{c} 0.1341 \\ 0.136120 \\ 0.138120 \\ \end{array} $	290 291 292
293 294 295	60.24 ₉₃ 61.17 ₉₄ 62.11 ₉₆	262.7 263.7 264.7	914.1 913.3 912.6	834.5 833.6 832.8	79.7	0.4297	1.2147 1.2121 1.2095	7.139 7.037102 6.937 98	0.1441_{21}^{20}	293 294 295
296 297 298	63.07 ₉₆ 64.03 ₉₇ 65.00 ₉₈	265.7 266.7 267.8	911.8 911.1 910.4	831.2	79.9	0.4337	1.2070 1.2044 1.2018	6.742 95 6.647 93	I	296 297 298
299 300 301	65.98 ₁₀₀ 66.98 ₁₀₁ 67.99 ₁₀₂	268.8 269.8 270.8	909.6 908.9 908.1	829.6 828.8 827.9	80.1	0.4378	1.1992 1.1967 1.1942	6.462 92	0.156922	299 300 301
302 303 304	69.01 ₁₀₃ 70.04 ₁₀₅ 71.09 ₁₀₆	271.9 272.9 273.9	907.4 906.6 905.9		80.3	0.4418	1.1916 1.1891 1.1865	6.195	$ \begin{array}{c} 0.1592 \\ 0.161422 \\ 0.163723 \end{array} $	302 303 304
305 306 307	72.15 73.22 108 74.30 110	274.9 276.0 277.0	905.1 904.4 903.6	824.7 823.9 823.0	80.5	0.4458	1.1840 1.1814 1.1788	5.941	$ \begin{array}{c} 0.1660 \\ 0.168324 \\ 0.170724 \end{array} $	305 306 307
308 309	75.40 ₁₁₁ 76.51 ₁₁₂	978 0	902.9 902.1	822.2 821.4		0.4485 0.4499	1.1763 1.1738	5.778 5.699 77	$0.1731_{\substack{24\\0.1755_{24}}}$	308 309

						,	,			
Temperature, Degrees Fahrenheit.	Pressure, Pounds per Square Inch.	Heat of the Liquid.	Heat of Vaporization.	Heat Equiva- bent of Inter- nal Work.	Heat Equiva-	Entropy of the Liquid.	Entropy of Yaporiza-	Specific Vol- ume, Cubic Feet per Pound.	Density,	Temperature, Degrees Fahrenheit.
310 311 312	77.63 78.76113 79.91115	280.1 281.1 282.1	901.3 900.5 899.8	820.5 819.7 818.9	80.8	0.4512 0.4525 0.4538	1.1688	5.622 ₇₆ 5.546 ₇₄ 5.472 ₇₃	0.1779 0.180324 0.182725	310 311 312
313 314 315	81.07 82.25 118 83.44 120	283.2 284.2 285.2	899.1 898.3 897.6	817.3		0.4552 0.4565 0.4578	1.1614	$\substack{5.399\\5.326\\72\\5.254\\72}$	$\begin{array}{c} 0.1852 \\ 0.187725 \\ 0.187726 \\ 0.190326 \end{array}$	313 314 315
316 317 318	84.64 85.86123 87.09124	286.2 287.3 288.3	896.8 896.0 895.2		81.2 81.2 81.3	0.4592 0.4605 0.4618		$\substack{5.182\\5.112\\69\\5.043\\69}$	$\begin{array}{c} 0.1929_{27} \\ 0.1956_{27} \\ 0.1983_{27} \end{array}$	316 317 318
319 320 321	88.33 89.59126 90.87128		894.5 893.7 892.9	813.1 812.3 811.4	81.4	0.4631 0.4644 0.4658	1.1465	4.974 ₆₇ 4.907 ₆₆ 4.841 ₆₄	$\begin{array}{c} 0.2010_{28} \\ 0.2038_{27} \\ 0.2065_{28} \end{array}$	319 320 321
322 323 324	92.16 93.46130 94.78132 94.78134		892.2 891.4 890.6	810.6 809.8 808.9		0.4671 0.4684 0.4697	1.1392	4.777 ₆₃ 4.714 ₆₁ 4.653 ₅₉	$\begin{array}{c} 0.2093_{28} \\ 0.2121_{28} \\ 0.2149_{28} \end{array}$	322 323 324
325 326 327	96.12 97.46134 98.82136	295.5 296.5 297.5	889.8 889.0 888.3	808.1 807.2 806.4	81.8	0.4710 0.4723 0.4736		$\substack{4.594\\4.53757\\4.480\\56}$	$\begin{array}{c} 0.2177 \\ 0.2204 \\ 28 \\ 0.2232 \\ 28 \end{array}$	325 326 327
328 329 330	$100.20\\101.58138\\102.98140\\102.98142$	298.6 299.6 300.6	887.5 886.7 885.9	805.6 804.7 803.8	82.0	0.4749 0.4762 0.4775	1.1245	$\substack{4.424\\4.36856\\4.31255}$	$\begin{array}{c} 0.2260_{29} \\ 0.2289_{30} \\ 0.2319_{30} \end{array}$	328 329 330
331 332 333	104.40 105.84144 107.30146		885.1 884.3 883.5	803.0 802.1 801.3	82.1 82.2 82.2	0.4789 0.4802 0.4815	1.1173	$\substack{4.257\\4.20156\\4.14655\\4.14654}$	$\begin{array}{c} 0.2349\\ 0.238031\\ 0.241232 \end{array}$	331 332 333
334 335 336	108.77 110.25148 111.74149 111.74152	304.8 305.8 306.8	882.8 882.0 881.2	800.5 799.6 798.8	82.4	0.4828 0.4841 0.4854	1.1101	$4.09254 \\ 4.03853 \\ 3.98551$	$\begin{array}{c} 0.2444 \\ 0.247632 \\ 0.250933 \end{array}$	334 335 336
337 338 339	113.26 ₁₅₃ 114.79155 116.34155	309.9	880.4 879.6 878.8	797.1	82.5	0.4867 0.4880 0.4892	1.1029	$3.934_{51} \\ 3.883_{50} \\ 3.833_{49}$	$\begin{array}{c} 0.2542\\ 0.257533\\ 0.260933 \end{array}$	337 338 339
340 341 342	117.91 119.50 121.10 161	310.9 312.0 313.0	878.0 877.2 876.4	794.5 793.6	82.7 82.8	0.4931	1.0958 1.0934	3.784 3.73746 3.69146	$\begin{array}{c} 0.2642_{34} \\ 0.2676_{33} \\ 0.2709_{34} \end{array}$	340 341 342
343 344 345	$\begin{smallmatrix} 122.71 \\ 124.35164 \\ 126.00167 \end{smallmatrix}$	314.0 315.1 316.1	874.0	791.9 791.0	82.9 83.0	0.4944 0.4957 0.4970	1.0887 1.0864	3.59945 3.55444		343 344 345
346 347 348	127.67 129.35 131.06 172	317.1 318.2 319.2	872.4	789.3 783.5	83.1 83.1		1.0817 1.0793	$3.467_{42}^{43} \\ 3.425_{42}^{42}$	$\begin{array}{c} 0.2849 \\ 0.288435 \\ 0.292036 \\ 0.292036 \end{array}$	346 347 348
349 350	$^{132.78}_{134.52}{}^{174}_{175}$	320.2 321.3				0.5021 0.5034	1.0770 1.0747	$3.383_{41} \\ 3.342_{40}$	$\begin{array}{c} 0.2956\\ 0.299236 \end{array}$	349 350

Temperature, Degrees Fahrenheit.	ire, inds per lare h.	Heat of the Liquid.	Heat of Vap- orization.	Heat Equiva- lent of Inter- nal Work.	Heat Equiva- lent of Exter- nal Work.	Entropy of the Liquid.	Entropy of Vaporiza-tion.	fic Vol- e, Cubic et per	Density, Pounds per Cubic Foot.	Temperature, Degrees Fahrenbeit.
Temp Deg Fal	Pressure, Pounds Square Inch.	b Heat	, Heat	Heat lent	nd V Heat	Entro the	Entro	Specific ume, Cr Feet Pound.	Densi Por Cuk	Temp Deg
351	136.27.	322.3	869.2	785.9	83.3	0.5047	1.0724	3.30200		351
352 353	$^{136.27}_{138.04179}_{139.83}_{181}$	323.3 324.4	868.3 867.5	785.0 784.1	83.3 83.4		1.0700	$3.302_{39} \\ 3.26339 \\ 3.224_{39}$	0.3028 ₃₇ 0.3065 ₃₇ 0.3102 ₃₈	352 353
354 355 356	141.64 143.46 182 145.30 187	325.4 326.4 327.5	866.7 865:9 865.1	783.3 782.4 781.5	83.4 83.5 83.6	0.5097	1.0654 1.0631 1.0608	$3.185_{38} \\ 3.147_{38} \\ 3.109_{38}$	$\begin{array}{c} 0.3140_{38} \\ 0.3178_{39} \\ 0.3217_{39} \end{array}$	354 355 356
357 358 359	147.17 149.05191 150.96193	328.5 329.5 330.6	864.3 863.5 862.6	780.7 779.8 778.9	83.6 83.7 83.7	0.5135	1.0585 1.0562 1.0539	$3.071_{38} \\ 3.033_{37} \\ 2.996_{36}$	$\substack{0.3256\\0.3297\\41\\0.3338\\40}$	357 358 359
360 361 362	152.89 154.83194 156.78198	331.6 332.6 333.7	861.8 861.0 860.2	778.1 777.2 776.3	83.7 83.8 83.9		1.0516 1.0493 1.0470	$2.960_{35} \\ 2.925_{35} \\ 2.890_{34}$	$\substack{0.3378\\0.3419\\41\\0.3460\\42}$	360 361 362
363 364 365	158.76 160.76 201 162.77 204	334.7 335.7 336.8	859.3 858.5 857.7	775.4 774.6 773.7	83.9 83.9 84.0	0.5211	1.0448 1.0425 1.0403	$2.856_{35} \\ 2.821_{34} \\ 2.787_{33}$	$\begin{array}{c} 0.3502_{43} \\ 0.3545_{43} \\ 0.3588_{43} \end{array}$	363 364 365
366 367 368	164.81 166.88207 168.96210	337.8 338.8 339.9	856.8 856.0 855.2	772.8 771.9 771.0	84.0 84.1 84.2	0.5249	1.0380 1.0357 1.0335	$2.754_{33} \\ 2.721_{32} \\ 2.689_{32}$	$0.3631_{ 0.3675_{ 44}}\\ 0.3675_{ 44}_{ 44}$ 0.3719 $_{ 44}^{ 44}$	366 367 368
369 370 371	171.06 173.17211 175.31216	340.9 341.9 343.0	854.4 853.5 852.7	770.2 769.3 768.4	84.2 84.2 84.3	0.5286	1.0312 1.0289 1.0267	$2.657_{31} \\ 2.626_{30} \\ 2.596_{30}$	$\begin{array}{c} 0.3763 \\ 0.3808 \\ 44 \\ 0.3852 \\ 45 \end{array}$	369 370 371
372 373 374	177.47 179.65220 181.85223	344.0 345.0 346.1	851.8 851.0 850.2	767.5 766.6 765.8	84.3 84.4 84.4	0.5324	1.0245 1.0222 1.0200	2.566 ₃₀ 2.536 ₂₉ 2.507 ₂₉	$0.3897\\0.394346\\0.398946$	372 373 374
375 376 377	$^{184.08}_{186.3224}_{188.60228}$	347.1 348.2 349.2	849.3 848.5 847.6	764.9 764.0 763.1	84.4 84.5 84.5	0.5361	1.0178 1.0156 1.0134	2.478 ₂₈ 2.450 ₂₈ 2.422 ₂₈	$0.4035 \\ 0.408247 \\ 0.412948$	375 376 377
378 379 380	$190.88_{193.19231}_{193.52233}_{235}$	350.2 351.3 352.3	846.8 846.0 845.1	762.2 761.4 760.5	84.6 84.6 84.6	0.5398	1.0112 1.0089 1.0066	$\substack{2.394\\2.36628\\2.33927}$	$ \begin{array}{c} 0.4177 \\ 0.422649 \\ 0.427550 \end{array} $	378 379 380
381 382 383	197.87 200.25238 202.64241	353.3 354.4 355.4	844.3 843.4 842.5	759.6 758.7 757.7	84.7 84.7 84.8	0.5435	1.0045 1.0022 1.0000	$\substack{2.312 \\ 2.28526 \\ 2.25925}$		381 382 383
384 385 386	205.05 207.49 209.96 249	356.5 357.5 358.5	841.7 840.8 840.0	756.9 756.0 755.1	84.8 84.8 84.9	0.5473	0.9978 0.9957 0.9935		$ \begin{array}{c} 0.4476 \\ 0.452751 \\ 0.457952 \\ 0.457951 \end{array} $	384 385 386
387 388 389	212.45 214.96251 217.50255	359.6 360.6 361.7	839.1 838.3 837.4	754.2 753.3 752.4	84.9 85.0 85.0	0.5509	0.9913 0.9891 0.9869	$egin{array}{c} \cdot 2.160_{24} \\ 2.136_{24} \\ 2.112_{24} \\ \end{array}$	0.4630 0.468252 0.473553	387 388 389
390 391	220.05 ₂₅₈ 222.63 ₂₆₀	362.7 363.7	836.6 835.7	751.6 750.6			0.9848 0.9826		0.4789 0.484556	390 391

Temperature, Degrees Fabrenheit.	Pressure, Pounds per Square Inch.	East of the Liquid.	Heat of Vaporisation.	Heat Equiva- lent of Inter- nal Work.	Heat Equiva-	• Entropy of the Liquid.	Entropy of Yaporisa-tion.	Specific Vol- ume, Cubic Feet per Pound.	Density, Pounds per Cubic Foot.	Temperature, Degrees Fahrenheit.
392 393 394	225.2 ₂₇ 227.9 ₂₆ 230.5 ₂₇	365.8	834.8 834.0 833.1	749.7 748.9 747.9	85.1 85.1 85.2	0.5558 0.5571 0.5583	0.9783	$2.041_{22} \\ 2.019_{22} \\ 1.997_{22}$	$\substack{0.490\\0.495\\0.501\\5}$	392 393 394
395 396 397	233.2 235.9 238.6 28	368.9	832.2 831.4 830.5	747.0 746.2 745.2	85.2 85.2 85.3	0.5595 0.5607 0.5619		$\substack{1.975 \\ 1.95322 \\ 1.93121}$	$\substack{0.506\\0.5126\\0.518}$	395 396 397
398 399 400	241.4 ₂₇ 244.1 ₂₈ 246.9 ₂₈		829.7 828.8 827.9	744.4 743.5 742.6	85.3 85.3 85.3	0.5632 0.5644 0.5656	0.9654	$\substack{1.910 \\ 1.88921 \\ 1.86821}$	0.524 ₅ 0.529 ₆ 0.535 ₆	398 399 4 00
401 402 403	249.7 ₂₉ 252.6 ₂₉ 255.5 ₂₉		827.0 826.1 825.2	741.6 740.7 739.8	85.4 85.4 85.4	0.5668 0.5680 0.5692	0.9589	$\substack{1.847\\1.82621\\1.80620\\20}$	0.541 ₇ 0.548 ₆ 0.554 ₆	401 402 403
404 405 406	258.4 ₂₉ 261.3 ₃₀ 264.3 ₃₀	377.3 378.3 379.4	824.4 823.5 822.6	739.0 738.1 737.1	85.4 85.4 85.5		0.9547 0.9525 0.9504	1.786 ₂₀ 1.766 ₁₉ 1.747 ₁₉	0.560 0.5666 0.5727	404 405 406
407 408 409	267.3 ₃₀ 270.3 ₃₀ 273.3 ₃₀	380.4 381.4 382.5	821.7 820.8 820.0	736.2 735.3 734.5	85.5 85.5 85.5		0.9483 0.9462 0.9441	1.728 ₁₉ 1.709 ₁₈ 1.691 ₁₈	0.579 0.5856 0.5917	407 408 409
410 411 412	$\begin{array}{c} 276.3_{31} \\ 279.4_{31} \\ 282.5_{32} \end{array}$	383.5 384.6 385.6	819.1 818.2 817.3	733.6 732.7 731.7	85.5 85.5 85.6	0.5789	0.9420 0.9399 0.9378	1.673 ₁₈ 1.655 ₁₈ 1.637 ₁₈	$\substack{0.598\\0.604\\7\\0.611\\7}$	410 411 412
413 414 415	$\begin{array}{c} 285.7_{32} \\ 288.9_{31} \\ 292.0_{32} \end{array}$	386.7 387.7 388.7	816.4 815.5 814.6	730.8 729.9 729.0	85.6 85.6 85.6	0.5825	0.9357 0.9336 0.9315	$\substack{1.619\\1.60118\\1.58417}$	0.618 ₇ 0.625 ₆ 0.631 ₇	413 414 415
416 417 418	295.2 ₃₃ 298.5 ₃₃ 301.8 ₃₃	389.8 390.8 391.9	813.7 812.8 811.9	728.1 727.2 726.3		0.5861	0.9294 0.9273 0.9253	$\substack{1.567\\1.55017\\1.53317}$	0.638 ₇ 0.645 ₇ 0.652 ₈	416 417 418
419 420 421	305.1 ₃₄ 308.5 ₃₃ 311.8 ₃₄	392.9 394.0 395.0	811.0 810.1 809.2	725.4 724.5 723.6	85.6	0.5896	0.9232 0.9211 0.9191	1.516 1.499 1.483 16	0.660 ₇ 0.667 ₇ 0.674 ₈	419 420 421
422 423 424	315.2 ₃₄ 318.6 ₃₅ 322.1 ₃₅	396.1 397.1 398.2	808.3 807.4 806.5	722.7 721.8 720.9	85.6 85.6 85.6	0.5932	0.9170 0.9149 0.9128	$\substack{1.467\\1.45216\\1.43616\\1.}$	0.682 ₇ 0.689 ₇ 0.696 ₈	422 423 424
425 426 427	325.6 ₃₅ 329.1 ₃₅ 332.6 ₃₆	399.2 400.3 401.3	805.6 804.7 803.8	720.0 719.1 718.2	85.6	0.5967	0.9108 0.9088 0.9067	1.40615	0.704 ₇ 0.711 ₈ 0.719 ₈	425 426 427
428	336.2	402.3	802.9	717.3	85.6	0.5991	0.9047	1.376	0.727	428
 						·	·		1	

TABLE II.

SATURATED STEAM.

ENGLISH UNITS.

Pressure, Pounds per Square Inch.	Temperature, Degrees Fabrenheit.	Heat of the Liquid. Heat of Vaporization.	Heat Equiva- lent of Inter- nal Work.	Heat Equiva- lent of Exter- nal Work.	Entropy of the Liquid.	Entropy of Vaporiza-tion.	Specific Vol- ume, Cubic Feet per Pound.	Density, Pounds per Cubic Foot.	Pressure, Pounds per Square Inch.
p .		1ª his	P	A pu	و حيك	$\frac{\frac{r}{T}}{-\frac{5}{7}}$	Vig	1 8	p
1 2 3	101.84 126.151537 141.521148	09.8 1034.	9 957.8	61.6 64.1 65.8	0.1329 0.1753 0.2011	1.8433 1.7432	118.4 547 280	261	1 2 3
4 5 6	153.00 926 162.26 781 170.07 677	121.0 1005. 130.3 1000.	0 932.1	67.9	0.2200 0.2351 0.2476	1.6084		0.01106 0.01364 252 0.01616 250	4 5 6
· 7 8 9	176.84 182.86 541 188.27 494	150.9 987.	8 917.8	70.0	0.2583 0.2678 0.2762	1.5378	53.6 47.26 42.36 399		7 8 9
10 11 12	193.21 197.74 453 201.95 392	100.9 978.	6 907.1	71.5	0.2838 0.2908 0.2972	1.4889	38.37 35.11 32.40 234	0.02606 0.02848 240 0.03088 239	10 11 12
13 14 15	205.87 209.55 348 213.03 328	101 3 000	2 898.6	72.6	0.3032 0.3088 0.3140	1.4516	30.06 28.03 26.28 154	0.03327 0.03567 238 0.03805 237	13 14 15
16 17 18	216.31 219.43 297 222.40 284	187.8 905.	0 891.5	73.5	0.3189 0.3236 0.3280	1.4213	24.74 23.38121 22.17110	0.04042 0.04277 234 0.04511 235	16 17 18
19 20 21	225.24 227.95 261 230.56 251	193.7 961. 196.4 959. 199.1 957.	4 885.1	74.3	0.3322 0.3362 0.3401	1.3957	20.09	$\begin{smallmatrix} 0.04746 & 232 \\ 0.04978 & 23 \\ 0.0521 & 23 \end{smallmatrix}$	19 20 21
22 23 24	233.07 235.50 237.82 225	204.1 954.	4 879.4	75.0	0.3438 0.3473 0.3507	1.3733	16.92 70 16.92 63	0.059123	22 23 24
25 26 27	240.07 242.26 210 244.36 205	210.9 949.	9 874.4	75.5	0.3539 0.3571 0.3601	1.3536	16.29 15.70 59 15.17 53	0.005923	25 26 27
28 29 30	246.41 200 248.41 193 250.34 188	217.2 945.	8 869.7	76.1	0.3631 0.3660 0.3687	1.3360	14.67 14.19 45 13.74 42	$\substack{0.0682\\0.070523\\0.072823}$	28 29 30
31 32	252.22 254.05 179	221.0 943. 222.9 941.			0.3714 0.3740		13.32 12.93 37	$\substack{0.0751 \\ 0.0773_{23}^{22}}$	31 32

		۵.	, 1			1	1	1		
Pressure, Pounds per Square Inch.	Temperature, Degrees Fahrenheit.	Heat of the Liquid.	Heat of Vap- orization.	Heat Equiva- lent of Inter- nal Work.	Heat Equiva- lent of Exter- nal Work.	Entropy of the Liquid.	Entropy of Vaporiza-tion.	Specific Vol- ume, Cubic Feet per Pound.	Density, Pounds per Cubic Foot.	Pressure, Pounds per Square Inch.
p	· t	q	7	ρ	A pu	θ	$\frac{r}{T}$	8	<u>1</u> 8	p
33 34 35	255.84 ₁₇₅ 257.59 ₁₇₀ 259.29 ₁₆₇	224.7 226.5 228.2	940.6 939.4 938.2	863.8 862.5 861.2	76.8 76.9 77.0		1.3149 1.3101 1.3054	12.21 33	$\begin{array}{c} 0.0796_{23} \\ 0.0819_{23} \\ 0.0842_{22} \end{array}$	33 34 35
36 37 38	260.96 262.58 159 264.17 156			859.9 858.6 857.4	77.2 77.3 77.4	0.3861	1.3007 1.2962 1.2918	$11.29 \begin{array}{c} 29 \\ 29 \end{array}$	$\substack{0.0864\\0.088622\\0.090822}$	36 37 38
39 40 41	265.73 267.26153 268.76147			856.2 855.0 853.8	77.5 77.6 77.8	0.3927	1.2875 1.2833 1.2792	10.49	$\substack{0.0930\\0.095323\\0.0976}_{22}$	39 40 41
42 43 44	270.23 271.66143 273.07 ₁₃₉			852.7 851.5 850.4	77.9 78.0 78.1	0.3988	1.2752 1.2713 1.2675	$\begin{array}{c} 10.02 & 22 \\ 9.801 & 212 \\ 9.589 & 202 \end{array}$	$\begin{array}{c} 0.0998 \\ 0.1020 \\ 23 \\ 0.1043 \\ 22 \end{array}$	42 43 44
45 46 47	274.46 275.82 134 277.16			849.3 848.2 847.2	78.2 78.4 78.4	0.4046	1.2638 1.2601 1.2565	9.387 9.195 195 9.012 174	$0.1065_{22} \\ 0.1087_{22} \\ 0.1109_{22}$	45 46 47
48 49 50	278 · 47 279 · 76 281 · 03 125			846.2 845.1 844.1	78.5 78.7 78.7	0.4101	1.2530 1.2496 1.2462	8.838 8.670168 8.507163	$\substack{0.1131\\0.1153_{22}\\0.1176_{22}}$	48 49 50
51 52 53	282.28 ₁₂₄ 283.52 ₁₂₂ 284.74 ₁₁₉			843.1 842.1 841.1	78.8 78.9 79.0		1.2428 1.2395 1.2363	8.350 8.198152 8.052140	$\begin{array}{c} 0.1198 \\ 0.122022 \\ 0.124222 \end{array}$	51 52 53
54 55 56	285.93 287.09116 288.25115			840.2 839.2 838.3	79.1 79.2 79.3	0.4186 0.4202 0.4218	1.2302	7.912 7.778134 7.647 ₁₂₈	$\substack{0.1264\\0.128622\\0.130822}$	54 55 56
57 58 59	289.40 290.53 111 291.64 110	259.0 260.1 261.3	916.7 915.9 915.1	837.4 836.5 835.6	79.3 79.4 79.5	0.4233 0.4249 0.4264	1.2211	7.519 7.397122 7.280117	$\substack{0.1330 \\ 0.135222 \\ 0.137421}$	57 58 59
60 61 62	292.74 ₁₀₈ 293.82 ₁₀₆ 294.88 ₁₀₅		914.3 913.5 912.7	834.7 833.8 832.9	79.6 79.7 79.8		1.2154 1.2126 1.2099	7.166 7.055 106 6.949 103	$0.1395_{22} \\ 0.1417_{22} \\ 0.1439_{22}^{22}$	60 61 62
63 64 65	295.93 ₁₀₄ 296.97 ₁₀₃ 298.00 ₁₀₂	265.7 266.7 267.8	911.9 911.1 910.4	832.1 831.2 830.4	79.8 79.9 80.0	0.4323 0.4337 0.4351	1.2072 1.2045 1.2018	$\substack{6.846\\6.745}_{0.745}\substack{01\\98\\6.647}$	$\substack{0.1461\\0.148322\\0.150422}$	63 64 65
66 67 68	$\begin{array}{c} 299.02 \\ 300.02 \\ 99 \\ 301.01 \\ 98 \end{array}$		909.6 908.9 908.1	829.6 828.8 827.9	80.0 80.1 80.2		1.1992 1.1966 1.1942	6.552 6.460 6.370 87	$\substack{0.1526 \\ 0.154822 \\ 0.157022}$	66 67 68
69 70 71	302.96 97	271.9 272.9 273.8	907.4 906.6 905.9	827.1 826.3 825.5	80.3 80.3 80.4	0.4405 0.4418 0.4430	1.1892	6.283 6.199 6.117 81	$\begin{array}{c} 0.1592 \\ 0.1613 \\ 22 \\ 0.1635 \\ 22 \end{array}$	69 70 71
72 73		274.8 275.8	905.2 904.5	824.8 824.0	80.4 80.5	0.4443 0.4456		6.036 5.958 78	$\substack{0.1657 \\ 0.1678 \\ 22}$	72 73

SATURATED STEAM - TABLE II.

Pressure, Pounds per Square Inch.	Temperature, Degrees Fahrenheit.	leat of the Liquid.	Heat of Vaporization.	Heat Equiva- lent of Inter- nal Work.	Heat Equiva- lent of Exter- nal Work.	Entropy of the Liquid.	Entropy of Vaporiza-tion.	Specific Volume, Cubic Feet per Found.	Density, Pounds per Cubic Foot.	Pressure, Pounds per Square Inch.
p Ld	£ t	₽ q	# r	μ _ο α	Apu	Θ θ	된 <u>r</u> T	 	1 1 8	P. P.
74 75 76	306.72 ₉₂ 307.64 ₉₀ 308.54 ₉₀	276.7 277.7 278.6	903.8 903.1 902.4	823.2 822.4 821.7	80.6 80.7 80.7		1.1795 1.1772 1.1750	5.88275 5.80772 5.73570	$\begin{bmatrix} 0.1700_{22} \\ 0.1722_{22} \\ 0.1744_{21} \end{bmatrix}$	7 <u>4</u> 75 76
77 78 79	$\begin{array}{c} 309.44_{89} \\ 310.33_{88} \\ 311.21_{87} \end{array}$	279.5 280.4 281.3	901.8 901.1 900.4	821.0 820.3 819.6	80.8 80.8 80.8	0.4504 0.4516 0.4528	1.1705	5.665 5.59767 5.53064		77 78 79
80 81 82	$312.08_{86} \\ 312.94_{85} \\ 313.79_{84}$	282.2 283.1 283.9	899.8 899.1 898.5	818.9 818.1 817.4	80.9 81.0 81.1	0.4540 0.4551 0.4562	1.1640	$5.40361 \\ 5.34261$	$ \begin{array}{c} 0.1829 \\ 0.185121 \\ 0.187222 \end{array} $	80 81 82
83 84 85	$314.63_{84} \\ 315.47_{83} \\ 316.30_{82}$	284.8 285.7 286.5	897.8 897.2 896.6	816.7 816.1 815.4		0.4584	1.1598 1.1577 1.1557	$\substack{\frac{5.281}{5.220}}_{\substack{5.220}}^{61}$ $\substack{\frac{5.161}{57}}$	$\begin{array}{c} 0.1894 \\ 0.191622 \\ 0.193821 \end{array}$	83 84 85
86 87 88	$\begin{array}{c} 317.12\\ 317.93\\ 318.73\\ 80 \end{array}$	287.4 288.2 289.0	895.9 895.3 894.7	814.7 814.0 813.3	81.2 81.3 81.4	0.4606 0.4617 0.4628	1.1516	$\substack{5.104\\5.04858\\4.993\\54}$	$\begin{array}{c} 0.1959 \\ 0.198122 \\ 0.200322 \end{array}$	86 87 88
89 90 91	$319.5379 \ 320.3278 \ 321.1078$	289.9 290.7 291.5	894.1 893.5 892.9		81.4 81.4 81.5	0.4638 0.4649 0.4659		$\substack{4.939\\4.88651\\4.835}$	$ \begin{array}{c} 0.2025 \\ 0.204721 \\ 0.206822 \end{array} $	89 90 91
92 93 94	$\begin{array}{r} 321.88_{77} \\ 322.65_{76} \\ 323.41_{75} \end{array}$	292.3 293.1 293.9	892.3 891.7 891.1	810.7 810.1 809.5	81.6	0.4669 0.4679 0.4689	1.1400	$\substack{4.785\\4.73649\\4.68945}$	$\begin{array}{c} 0.2090 \\ 0.211221 \\ 0.213320 \end{array}$	92 93 94
95 96 97	$\begin{array}{r} 324.16_{75} \\ 324.91_{75} \\ 325.66_{74} \end{array}$	294.6 295.4 296.2	890.5 889.9 889.3	808.8 808.2 807.5	81.7 81.7 81.8	0.4699 0.4709 0.4719	1.1345	4.644 4.59943 4.55642	$\substack{0.2153\\0.217421\\0.219520}$	95 96 97
98 99 100	$\begin{array}{r} 326.40_{73} \\ 327.13_{73} \\ 327.86_{72} \end{array}$	296.9 297.7 298.5	888.7 888.2 887.6	806.9 806.3 805.7	81.8 81.9 81.9	0.4729 0.4738 0.4748		4.514 4.47341 4.43241	$\substack{0.2215\\0.223621\\0.225621}$	98 99 100
101 102 103	$\begin{array}{r} 328.58\\ 329.3072\\ 330.0171\\ \end{array}$	299.2 299.9 300.6	887.0 886.5 885.9	805.1 804.5 803.8	81.9 82.0 82.1	0.4757 0.4766 0.4776	1.1238	$4.391_{40} \\ 4.351_{40} \\ 4.311_{39}$	$\begin{array}{c} 0.2277 \\ 0.229821 \\ 0.232021 \end{array}$	101 102 103
104 105 106	$330.72_{70} \\ 331.42_{69} \\ 332.11_{68}$	301.4 302.1 302.8	885.3 884.8 884.3	803.2 802.7 802.1	82.1 82.1 82.2	0.4785 0.4794 0.4803		4.272 ₃₉ 4.233 ₃₈ 4.195 ₃₈	$\begin{array}{c} 0.2341 \\ 0.236221 \\ 0.238422 \\ 0.238422 \end{array}$	104 105 106
107 108 109	$332.79_{69} \\ 333.48_{68} \\ 334.16_{67}$	303.5 304.2 304.9	883.7 883.2 882.6		82.3 82.3		1.1154 1.1137 1.1121	4.12037 4.08336	$\begin{array}{c} 0.2406 \\ 0.2427 \\ 0.2427 \\ 22 \end{array}$	107 108 109
110 111 112	334.83 ₆₇ 335.50 ₆₇ 336.17 ₆₆	305.6 306.3 307.0	882.1 881.6 881.0	799.7 799.2 798.6			1.1105 1.1089 1.1073	$\frac{4.01135}{3.97633}$	$\begin{array}{c} 0.2471 \\ 0.249322 \\ 0.251521 \end{array}$	110 111 112
113 114	336.83 ₆₅ 337.48 ₆₆	307.7 308.3	880.5 880.0	798.0 797.5			1.1057 1.1041		$\substack{0.2536 \\ 0.2558 \\ 22}$	113 114

Pressure, Pounds per Square Inch.	Femperature, Degrees Fahrenheit.	leat of the Liquid.	leat of Vap- orisation.	Heat Equiva- lent of Inter- nal Work.	Heat Equiva- lent of Exter- nal Work.	Entropy of the Liquid.	Entropy of Vaporiza-tion.	Specific Vol- ume, Cubic Feet per Found.	Density, T Pounds per Cubic Foot.	Pressure, Pounds per Square Inch.
p p	t .	Q	# *	ρ	Ари	θ	Ξ <u>τ</u>	8	1 8	P P
115 116 117	338.14 ₆₄ 338.78 ₆₄ 339.42 ₆₄	309.0 309.7 310.3	879.5 879.0 878.5	797.0 796.4 795.9	82.5 82.6 82.6	0.4881 0.4890 0.4898	1.1011	3.876 ₃₂ 3.844 ₃₂ 3.812 ₃₁	$\begin{array}{c} 0.2580_{21} \\ 0.2601_{22} \\ 0.2623_{21} \end{array}$	115 116 117
118 119 120	340.06 340.6962 341.3163	311.0 311.7 312.3	878.0 877.4 876.9	795.3 794.7 794.2	82.7 82.7 82.7	0.4906 0.4914 0.4922	1.0966	3.781 ₂₉ 3.752 ₂₉ 3.723 ₂₉	$\begin{array}{c} 0.2644 \\ 0.2665 \\ 0.2686 \\ 21 \end{array}$	118 119 120
121 122 123	341.94 342.5662 343.1861	312.9 313.6 314.2	876.4 875.9 875.4	793.6 793.1 792.6	82.8 82.8 82.8	0.4930 0.4938 0.4946	1.0921	$\begin{array}{c} \mathbf{3.694_{29}} \\ \mathbf{3.665_{28}} \\ \mathbf{3.637_{28}} \end{array}$	$ \begin{array}{c} 0.2707 \\ 0.2729 \\ 0.2750 \\ 21 \end{array} $	121 122 123
124 125 126	343.79 344.3960 345.0060	314.8 315.5 316.1	875.0 874.5 874.0	792.1 791.6 791.0		0.4954 0.4962 0.4970	1.0878	3.609 ₂₈ 3.581 ₂₇ 3.554 ₂₇	$\begin{array}{c} 0.2771 \\ 0.279322 \\ 0.281421 \end{array}$	124 125 126
127 128 129	345.60 346.20 346.79 59	316.7 317.3 317.9	873.5 873.0 872.6	790.5 790.0 789.5		0.4977 0.4985 0.4993	1.0836	$3.527_{26} \\ 3.501_{25} \\ 3.476_{25}$	$\begin{array}{c} 0.2835 \\ 0.285621 \\ 0.287721 \\ \end{array}$	127 128 129
130 131 132	347.38 347.9658 348.5558	318.6 319.2 319.8	872.1 871.6 871.1	789.0 788.5 788.0	83.1 83.1 83.1	0.5000 0.5008 0.5015	1.0794	$\substack{\frac{3.451}{3.42725}\\3.402_{24}^2}$	$\begin{array}{c} 0.2898 \\ 0.291820 \\ 0.293921 \\ \end{array}$	130 131 132
133 134 135	349.13 ₅₇ 349.70 ₅₇ 350.27 ₅₇	320.4 320.9 321.5	870.7 870.2 869.8	787.5 787.0 786.5	83.2 83.2 83.3	0.5023 0.5030 0.5037	1.0754	$\begin{array}{c} 3.378_{24} \\ 3.354_{23} \\ 3.331_{23} \end{array}$	$\begin{array}{c} 0.2960 \\ 0.2981 \\ 0.3002 \\ 21 \end{array}$	133 134 135
136 137 138	350.84 ₅₇ 351.41 ₅₇ 351.98 ₅₆	322.1 322.7 323.3	869.3 868.8 868.3	786.0 785.5 785.0	83.3 83.3 83.3	0.5044 0.5052 0.5059	1.0714	$\substack{3.308\\3.286\\22\\3.264\\22}$	$\begin{array}{c} 0.3023 \\ 0.3043 \\ 0.3064 \\ 21 \end{array}$	136 137 138
139 140 141	352.54 353.0955 353.6556	323.9 324.4 325.0	867.9 867.4 867.0	784.5 784.0 783.6	83.4 83.4 83.4	0.5066 0.5073 0.5080	1.0675	$\substack{3.242\\3.220\\21\\3.199\\22}$	$ \begin{array}{c} 0.3085 \\ 0.310621 \\ 0.312620 \\ 0.312621 \end{array} $	139 140 141
142 143 144	354.20 354.7554 355.2954	325.6 326.2 326.7	866.5 866.1 865.6	783.1 782.6 782.1	83.4 83.5 83.5	0.5087 0.5094 0.5101	1.0637	$\substack{3.177\\3.15620\\3.13621}$	$\begin{array}{c} 0.3147 \\ 0.316821 \\ 0.318921 \\ \end{array}$	142 143 144
145 146 147	355.83 ₅₄ 356.37 ₅₄ 356.91 ₅₃	327.3 327.8 328.4	865.2 864.8 864.3	781.6 781.2 780.7	83.6 83.6 83.6	0.5108 0.5115 0.5122	1.0599	$\substack{\frac{3.115}{3.09521}\\3.07420}$	$\begin{array}{c} 0.3210 \\ 0.323121 \\ 0.325321 \end{array}$	145 146 147
148 149 150	357.44 ₅₃ 357.97 ₅₃ 358.50 ₅₂	328.9 329.5 330.0		780.3 779.8 779.3	83.7	0.5128 0.5135 0.5142	1.0563	3.01420	21	148 149 150
151 152 153	$\begin{array}{r} 359.02_{52} \\ 359.54_{52} \\ 360.06_{51} \\ \end{array}$	330.6 331.1 331.6	862.2	778.9 778.5 778.1	83.7	0.5155 0.5162	1.0515	2.995 ₁₈ 2.977 ₁₉ 2.958 ₁₈	$\begin{array}{c} 0.3339 \\ 0.335920 \\ 0.338021 \\ 0.338021 \end{array}$	151 152 153
1 54 155	360.57 ₅₂ 361.09 ₅₁	332.2 332.7		777.6 777.1		0.5168 0.5175	1.0503 1.0491	2.940 ₁₈ 2.922 ₁₈	$ \begin{array}{c c} 0.3401_{\dot{2}1} \\ 0.3422_{\dot{2}2}^{\dot{2}1} \end{array} $	154 155

per Inch.	ıre, leit.	the	rap-	iva- ter-	iva- Ex- 7 ork.	uid.	ر ا	Vol- abic per	o yet	nch.
Pressure, Pounds per Square Inch.	Temperature, Degrees Fahrenheit.	leat of Liquid.	Heat of Vaporisation.	Heat Equiva- lent of Inter- nal Work.	leat Equiva- lent of Ex- ternal Work.	Entropy of the Liquid.	Entropy of Vaporiza-	Specific Vol- ume, Cubic Feet per Pound.	Density, Pounds per Cubic Foot,	Pressure, Pounds per Square Inch.
		F	Hes	Hea len	I		Ent.	Specific	1 1	T Y S
<i>p</i>	<u> </u>	<i>q</i>			Apu ———		$\overline{\overline{T}}$		1 8	<i>p</i>
156 157 158	$\begin{array}{r} 361.60 \\ 362.1151 \\ 362.6250 \end{array}$	333.2 333.8 334.3	860.5 860.1 859.6	776.6 776.2 775.7		0.5181 0.5187 0.5194	1.0468	$\substack{2.904 \\ 2.88618 \\ 2.86917 }$	$\begin{array}{c} 0.3444 \\ 0.346521 \\ 0.348621 \end{array}$	156 157 158
159 160 161	363.12 ₅₀ 363.62 ₅₀ 364.12 ₅₀	334.8 335.3 335.9	859.2 858.8 858.4	775.3 774.9 774.5	83.9 83.9 83.9	0.5200 0.5206 0.5213	1.0434	$2.852_{18} \\ 2.834_{17} \\ 2.817_{17}$	$\begin{array}{c} 0.3507 \\ 0.3528 \\ 22 \\ 0.3550 \\ 21 \end{array}$	159 160 161
162 163 164	$364.62_{49} \\ 365.11_{49} \\ 365.60_{49}$	336.4 336.9 337.4	858.0 857.6 857.2	774.0 773.6 773.2	84.0 84.0 84.0	0.5219 0.5225 0.5231	1.0400	$2.800 \atop 2.78316 \atop 2.76716$	$\begin{array}{c} 0.3571_{22} \\ 0.3593_{21} \\ 0.3614_{21} \end{array}$	162 163 164
165 166 167	$\begin{array}{r} 366.09_{49} \\ 366.58_{48} \\ 367.06_{48} \end{array}$	337.9 338.4 338.9	856.8 856.4 856.0	.772.8 772.3 771.9		0.5237 0.5244 0.5250	1.0367	$\substack{2.751 \\ 2.73516 \\ 2.71915}$	$\substack{0.3635_{21}\\0.3656_{21}\\0.3677_{21}}$	165 166 167
168 169 170	$\begin{array}{r} 367.54 \\ 368.02 \\ 48 \\ 368.50 \\ 47 \end{array}$	339.4 339.9 340.4	855.6 855.2 854.8	771.4 771.0 770.6	84.2 84.2 84.2	0.5256 0.5262 0.5268	1.0335	$\substack{2.704 \\ 2.68816 \\ 2.67315}$	$\begin{array}{c} 0.3698 \\ 0.3720 \\ 21 \\ 0.3741 \\ 21 \end{array}$	168 169 170
171 172 173	368.97 369.45 369.92 47	340.9 341.4 341.8	854.4 854.0 853.6	770.2 769.8 769.4	84.2 84.2 84.2	0.5273 0.5279 0.5285	1.0302	$\substack{2.658\\2.64315\\2.62814}$	$\begin{array}{c} 0.3762_{22} \\ 0.3784_{21} \\ 0.3805_{21} \end{array}$	171 172 173
174 175 176	370.39 ₄₇ 370.86 ₄₆ 371.32 ₄₆	342.3 342.8 343.3	853.2 852.8 852.4	769.0 768.5 768.1	84.2 84.3 84.3	0.5291 0.5297 0.5303	1.0270	$2.614_{14} \\ 2.600_{14} \\ 2.586_{13}$	$\substack{0.3826_{20}\\0.3846_{21}\\0.3867_{20}^{21}}$	174 175 176
177 178 179	371.78 372.2446 372.7046	343.8 344.2 344.7	852.0 851.6 851.3	767.7 767.3 766.9	84.3 84.3 84.4	0.5309 0.5314 0.5320	1.0239	2.573 ₁₄ 2.559 ₁₄ 2.545 ₁₄	$\begin{array}{c} 0.3887 \\ 0.3908 \\ 21 \\ 0.3929 \\ 22 \end{array}$	177 178 179
180 181 182	$373.16_{45} \\ 373.61_{46} \\ 374.07_{45}$	345.2 345.7 346.2	850.9 850.5 850.1	766.5 766.1 765.7	84.4	0.5326 0.5331 0.5337	1.0209	2.531 2.518 13 2.505 13	$\begin{array}{c} 0.3951 \\ 0.397221 \\ 0.399221 \end{array}$	180 181 182
183 184 185	374.52 374.9645 375.4145	346.6 347.1 347.5	849.7 849.4 849.0	765.3 764.9 764.5	84.5	0.5343 0.5348 0.5354	1.0179	$2.492_{13} \\ 2.479_{12} \\ 2.467_{13}$	$\begin{array}{c} 0.4013 \\ 0.403421 \\ 0.405421 \\ \end{array}$	183 184 185
186 187 188	375.86 ₄₄ 376.30 ₄₄ 376.74 ₄₄	348.0 348.5 348.9	848.6 848.2 847.8	764.1 763.7 763.3	84.5 84.5 84.5	0.5359 0.5365 0.5370	1.0149	$2.454_{12} \\ 2.442_{13} \\ 2.429_{12}$	$\begin{array}{c} 0.4075_{20} \\ 0.4095_{21} \\ 0.4116_{21} \end{array}$	186 187 188
189 190 191	377.18 377.6144 378.0544	349.4 349.8 350.3	847.1	763.0 762.6 762.2	84.5	0.5376 0.5381 0.5387	1.0121	$2.405_{12}^{12} \\ 2.393_{13}^{12}$		189 190 191
192 193 194	378.49 378.9243 379.3543	350.7 351.2 351.6	846.0	761.4	84.6	0.5392 0.5397 0.5403	1.0091	2.368_{11}^{12} 2.357_{12}^{11}	$\begin{array}{c} 0.4201 \\ 0.422221 \\ 0.424321 \end{array}$	192 193 1 94
195 196	$379.78_{42} \\ 380.20_{43}$	352.1 352.5		760.7 760.3	84.6 84.6	0.5408 0.5413	1.0071 1.0062	$2.345 \atop 2.334 \atop 12$	$0.4264_{21} \\ 0.4285_{21}^{21}$	195 196

Pressure, Pounds per Square Inch.	Temperature, Degrees Fahrenheit.	Heat of the Liquid.	Heat of Vaporization.	Heat Equiva- lent of Inter- nal Work.	Heat Equiva- lent of Ex- ternal Work.	Entropy of the Liquid.	Entropy of Yaporiza-	Specific Vol- ume, Cubic Feet per Pound.	Density, Pounds per Cubic Foot.	Pressure, Pounds per Square Inch.
197 198 199	380.63 ₄₂ 381.05 ₄₂ 381.47 ₄₂	353.0 353.4 353.8	844.6 844.2 843.9	759.9 759.5 759.2	84.7	0.5418 0.5424 0.5429	1.0044	$\begin{array}{r} 2.322\\ 2.3111\\ 2.3112\\ 2.299\\ 11 \end{array}$	$\begin{matrix} & & & & & \\ & 0.4306_{21} \\ 0.4327_{22} \\ 0.4349_{22} \end{matrix}$	197 198
200 201 202	381.89 382.3142 382.7342	354.3 354.7 355.1	843.5 843.1 842.8	758.8 758.4 758.0	84.7	0.5434 0.5439 0.5444	1.0025 1.0015	2.288_{11} 2.277_{11} 2.266_{11}	0.4371 0.439221 0.441321	199 200 201 202
203 204 205	$383.15_{41} \\ 383.56_{42} \\ 383.98_{41}$	355.6 356.0 356.4	842.4 842.1 841.7	757.6 757.3 756.9	84.8 84.8 84.8	0.5450 0.5455 0.5460	0.9988	$2.255 \atop 2.245 \atop 10 \atop 2.235 \atop 11$	$\substack{0.4434\\0.445420\\0.447521}$	203 204 205
206 207 208	$384.39_{41} \\ 384.80_{41} \\ 385.21_{40}$	356.9 357.3 357.7	841.3 841.0 840.7	756.5 756.2 755.8	84.8 84.8 84.9	0.5465 0.5470 0.5475	0.9961	$\substack{\frac{2.224}{2.21410}\\2.21410\\2.20410}$		206 207 208
209 210 211	$385.61_{41} \\ 386.02_{40} \\ 386.42_{40}$	358.1 358.6 359.0	840.3 840.0 839.6	755.4 755.1 754.7		0.5480 0.5485 0.5490	0.9935	$\substack{\frac{2.194}{2.18410} \\ 2.17410}$		209 210 211
212 213 214	$386.82_{40} \\ 387.22_{40} \\ 387.62_{40}$	359.4 359.8 360.2	839.3 839.0 838.6	754.4 754.1 753.7	84.9 84.9 84.9	0.5495 0.5500 0.5505	0.9908	$2.164\ 2.15510\ 2.1459$	U.	212 213 214
215 216 217	$388.02_{39} \\ 388.41_{39} \\ 388.80_{40}$	360.6 361.0 361.4	838.3 837.9 837.6	753.3 752.9 752.6	85.0 85.0 85.0	0.5510 0.5514 0.5519	0.9882	$\substack{2.136\\2.126\\2.117\\9\\2.117\\10}$		215 216 217
218 219 220	389.20 ₃₉ 389.59 ₃₉ 389.98 ₃₉	361.9 362.3 362.7	837.2 836.9 836.6	752.2 751.9 751.6	85.0 85.0 85.0	0.5524 0.5529 0.5534		2.10792.098102.0889	$\substack{0.4746 \\ 0.476721 \\ 0.478921}$	218 219 220
221 222 223	$390.37_{39} \\ 390.76_{38} \\ 391.14_{39}$	363.1 363.5 363.9	836.2 835.9 835.6	751.2 750.8 750.5	85.0 85.1 85.1	0.5543	0.9840 0.9831 0.9823	$2.079 \ 2.070 \ 9 \ 2.061 \ 9$	$\substack{0.4810 \\ 0.483121 \\ 0.485221}$	221 222 223
224 225 226	$ \begin{array}{r} 391.53_{38} \\ 391.91_{38} \\ 392.29_{38} \end{array} $	364.3 364.7 365.1	835.2 834.9 834.6	750.1 749.8 749.5	85.1 85.1 85.1	0.5557	0.9814 0.9806 0.9798	2.052 9 2.043 8 2.035 9	$\substack{0.4873\\0.4894}\\0.4914\\21$	224 225 226
227 228 229	392.67 ₃₇ 393.04 ₃₈ 393.42 ₃₈	365.5 365.9 366.2	834.3 833.9 833.6	749.2 748.8 748.5	85.1 85.1	0.5571 0.5576	0.9790 0.9782 0.9774	2.026 8 2.018 8 2.010 9	$\substack{0.4935\\0.495621\\0.497621}$	227 228 229
230 231 232	$393.80_{38} \\ 394.18_{38} \\ 394.56_{37}$	366.6 367.0 367.4	832.9 832.6	747.7 747.4	85.2 85.2	0.5585 0.5590	0.9765 0.9757 0.9749	1.993 8 1.985 8	0.504 2	230 231 232
233 234 235	394.93 ₃₇ 395.30 ₃₇ 395.67 ₃₇	367.8 368.2 368.6	832.0 831.7	746.8 746.5	85.2 85.2	0.5598 0.5603	0.9741 0.9733 0.9725	1.977 1.968 1.960 8	0.510 2	233 234 235
236 237	396.04 ₃₇ 396.41 ₃₇	369.0 369.4					0.9717 0.9709	1.952 1.944 8	0.512 2 0.514 3	236 237

Pressure, Pounds per Square Inch.	Temperature, Degrees Fahrenheit.	leat of the Liquid.	feat of Vap- orization.	Heat Equiva- lent of Inter- nal Work.	leat Equiva- lent of Ex- ternal Work.	Entropy of the Liquid.	Entropy of Vaporiza-tion.	Specific Volume, Cubic Feet per Pound.	Density, Pounds per Cubic Foot.	Pressure, Pounds per Square Inch.
b Ha	Ten I	d Hea	He	Her o ler na	Apu	θ th	Ent	8 8 9 2 8	1 1 8 1 1 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 P
238 239 240	396.78 ₃₆ 397.14 ₃₆ 397.50 ₃₆	369.7 370.1 370.5	830.7 830.4 830.1	745.4 745.1 744.8		0.5617 0.5621 0.5625	0.9693	$\substack{1.936\\1.928\\1.921\\7}$	$\begin{array}{c} 0.517 \\ 0.5192 \\ 0.5212 \end{array}$	238 239 240
241 242 243	397.86 398.2237 398.5937	370.9 371.2 371.6	829.8 829.5 829.1	744.5 744.2 743.8	85.3 85.3 85.3	0.5630 0.5634 0.5639	0.9670	$\substack{1.913\\1.905\\1.898}_{8}$	$\begin{array}{c} 0.523 \\ 0.5252 \\ 0.5272 \end{array}$	241 242 243
244 245 246	398.96 399.3236 399.6836	372.0 372.4 372.8	828.8 828.5 828.2	743.5 743.2 742.9	85.3 85.3 85.3	0.5643 0.5648 0.5652	0.9647	1.890 ₈ 1.882 ₇ 1.875 ₈	0.529 ₂ 0.531 ₂ 0.533 ₃	244 245 246
247 248 249	400.04 400.3935 400.7535	373.1 373.5 373.9	827.8 827.5 827.2	742.5 742.2 741.8	85.3 85.3 85.4	0.5656 0.5661 0.5665	0.9624	1.867_7 1.860_8 1.852_7	$\begin{array}{c} 0.536_{2} \\ 0.538_{2} \\ 0.540_{2} \end{array}$	247 248 249
250 251 252	$\substack{401.10\\401.4535\\401.7934}$	374.2 374.6 375.0	826.9 826.6 826.3	741.5 741.2 740.9	85.4	0.5669 0.5673 0.5678	0.9601	$1.845_{7} \\ 1.838_{8} \\ 1.830_{7}$	$egin{array}{c} 0.542 \\ 0.5442 \\ 0.5463 \end{array}$	250 251 252
253 254 255	$\begin{array}{r} 402.14_{34} \\ 402.48_{35} \\ 402.83_{34} \end{array}$	375.3 375.7 376.0	826.0 825.7 825.4	740.6 740.3 740.0	85.4	0.5682 0.5686 0.5690	0.9579	$\substack{1.823 \\ 1.8167 \\ 1.809 \\ 6}$	$\begin{array}{c} 0.549_{2} \\ 0.551_{2} \\ 0.553_{2} \end{array}$	253 254 255
256 257 258	403.17 403.5235 403.8635	376.4 376.8 377.1	825.1 824.8 824.5	739.7 739.4 739.1	85.4	0.5694 0.5699 0.5703	0.9557	$1.803_{7} \\ 1.796_{7} \\ 1.789_{7}$	$\substack{0.555 \\ 0.557 \\ 0.559 \\ 2}$	256 257 258
259 260 261	404.21 ₃₄ 404.55 ₃₄ 404.89 ₃₄	377.5 377.8 378.2	824.2 823.9 823.6	738.8 738.5 738.2		0.5707 0.5711 0.5715	0.9535	$\begin{array}{c} 1.782_{7} \\ 1.775_{7} \\ 1.768_{6} \end{array}$	$\substack{0.561 \\ 0.563 \\ 0.566 \\ 2}$	259 260 261
262 263 264	405.23 ₃₄ 405.57 ₃₃ 405.90 ₃₃	378.5 378.9 379.2	823.3 823.0 822.7	737.9 737.5 737.2	85.4 85.5 85.5	0.5719 0.5723 0.5727	0.9513	1.762 ₇ 1.755 ₆ 1.749 ₆	$\substack{0.568_2\\0.570_2\\0.572_2^2}$	262 263 264
265 266 267	406.23 ₃₄ 406.57 ₃₃ 406.90 ₃₃	379.6 379.9 380.3	822.4 822.1 821.8	736.9 736.6 736.3	85.5	0.5731 0.5735 0.5739	0.9492	$\substack{1.743\\1.736\\1.730\\6}$	$\begin{array}{c} 0.574_{2} \\ 0.576_{2} \\ 0.578_{2} \end{array}$	265 266 267
268 269 270	407.23 407.5733 407.9033	380.6 381.0 381.3	821.5 821.2 820.9	736.0 735.7 735.4	85.5 85.5 85.5	0.5743 0.5747 0.5751	0.9471	$\begin{array}{c} 1.724 \\ 1.717 \\ 1.7116 \\ 1.7116 \end{array}$	0.580 ₂ 0.582 ₂ 0.584 ₃	268 269 270
271 272 273	408.23 408.57 33 408.90	381.7 382.0 382.4	820.6 820.3 820.1	735.1 734.8 734.6	85.5	0.5755 0.5759 0.5763	0.9450	1.705 1.6996 1.6936	$\begin{array}{c} 0.587_{2} \\ 0.589_{2}^{2} \\ 0.591_{2}^{2} \end{array}$	271 272 273
274 275 276	409.23 409.57 33 409.90 33	382.7 383.1 383.4	819.8 819.5 819.2	734.3 734.0 733.7	85.5	0.5767 0.5771 0.5775	0.9429	$ \begin{array}{c} 1.687\\ 1.6816\\ 1.6756 \end{array} $	$\begin{array}{c} 0.593_{2} \\ 0.595_{2}^{2} \\ 0.597_{2}^{2} \end{array}$	274 275 276
277 278	410.23 ₃₂ 410.55 ₃₂	383.8 384.1	818.9 818.6	733.4 733.1		0.5779 0.5783		1.669 1.6636	$0.599_{2} \\ 0.601_{2}$	277 278

										
Pressure, Pounds per Square Inch.	Temperature, Degrees Fahrenheit.	the	Heat of Vap- orization.	t Equiva- t of Inter- Work.	Heat Equiva- lent of Ex- ternal Work.	Entropy of the Liquid.	of sa-	Specific Vol- ume, Cubic Feet per Pound.	s per Foot.	Pressure, Pounds per Square Inch.
sure, ound	pers	t of iquid.	t of izati	t Eq t of] Wou	t Eq nt of rnal	6 8 L.y	Entropy Vaporisa-tion.	ific ne, (set ound	Density, Pounds 1 Cubic Fo	sure, unde uare
F. S. S. S.	T ED F	Heat Liq	Hea	Heat lent onal V	Hear led te	Ent	Entu Vi tic	Spec Fr	D E E E	Pres Po
p	ŧ	q	r	ρ	A pu	θ	$\frac{\underline{r}}{T}$	8	1 8	p
279	410.8720	384.4	818.3	732.8	85.5	0.5787	0.9402	1.657,	0.6032	279
280 281	410.87 ₃₂ 411.19 ₃₃ 411.52 ₃₂	384.8 385.1	818.0 817.7	732.5 732.1	85.5 85.6	0.5791	0.9395 0.9388	1.657_{5} 1.6526 1.6466	$\begin{array}{c} 0.605_{2}^{2} \\ 0.608_{2}^{2} \end{array}$	280 281
282		385.4	817.4	731.8		0.5799		1.640	$0.610_{2} \\ 0.612_{2}$	282
283 284	$\begin{array}{c} 411.84_{32} \\ 412.16_{31} \\ 412.47_{31} \end{array}$	385.8 386.1	817.2 816.9	731.6 731.3	85.6 85.6		0.9375 0.93 6 8	$1.640_{6} \\ 1.634_{5} \\ 1.629_{6}$	$0.612_{2} \\ 0.614_{2}$	283 284
285 286	412.78 413.0031	386.4 386.7	816.6 816.3	731.0 730.7		0.5810 0.5814	0.9362	$\frac{1.623}{1.6175}$	0.616 ₂ 0.618 ₂	285 286
287	412.78 413.0931 413.4131	387.1	816.0	730.4		0.5818		1.6126	0.0203	287
288 289	413.72 ₃₁ 414.03 ₃₂ 414.35 ₃₃	387.4 387.7	815.8 815.5	730.2 729.9	85.6 85.6	0.5821 0.5825	0.9342 0.9335	$1.606_{1.6005}$ 1.595_{6}	0.623 ₂ 0.625 ₂	288 289
290	414.35 ³²	388.1	815.2	729.6		0.5829		1.5956	$\begin{array}{c} 0.625^2_2 \\ 0.627^2_2 \end{array}$	290
291 292	414.68 ₃₂ 415.00 ₃₁ 415.31 ₃₂	388.4 388.7	814.9 814.6	729.3 729.0	85.6 85.6	0.5833 0.5837	0.9322 0.9315	1.589_{5} 1.5845 1.579_{6}	0.629 ₂ 0.631 ₂	291 292
293	415.3131 32	389.1	814.3	728.7	85.6		0.9308		0.0333	293
294 295	415.63 ₃₁ 415.94 ₃₀ 416.24 ₃₁	389.4 389.7	814.1 813.8	728.5 728.2	85.6 85.6	0.5844 0.5848		$\begin{array}{c} 1.573 \\ 1.568 \\ 1.563 \\ 5 \end{array}$	0.636 ₂ 0.638 ₂	294 295
296	416.2430	390.0	813.5	727.9	85.6	0.5852		1.5635	0.6402	296
297 298	416.5530	390.4 390.7	813.2 813.0	727.6 727.4	85.6 85.6	0.5855	0.9282 0.9276	$\frac{1.558}{1.553}$	0.642 ₂ 0.644 ₂	297 298
299	416.55 ₃₀ 416.85 ₃₀ 417.15 ₃₀	391.0	812.7	727.1	85.6		0.9270	1.5476	0.6463	299
300 301	417.45 417.7631	391.3 391.6	812.4 812.1	726.8 726.5	85.6 85.6		0.9264 0.9258	1.542	0.649 ₂ 0.651 ₂	300 301
302	417.45 ₃₁ 417.76 ₃₀ 418.06 ₃₀	391.9	811.9	726.3	85.6		0.9252	1.542_{5} 1.537_{5} 1.532_{5}	0.6532	302
303 304	418.3631	392.3 392.6	811.6 811.3	726.0 725.7	85.6 85.6		0.9245 0.9239	$\frac{1.527}{1.5225}$	0.6552	303
305	418.36 ₃₁ 418.67 ₃₀ 418.97 ₂₉	392.9	811.1	725.5	85.6		0.9233	1.5175	$\substack{0.655 \\ 0.657 \\ 0.659 \\ 2}$	304 305
306 307	419.26 ₃₀	393.2 393.5	810.8 810.5	725.2 724.9	85.6 85.6		0.9227 0.9220	$\frac{1.512}{1.5075}$	0.661 ₃ 0.664 ₂	306 307
308	419.26 ₃₀ 419.56 ₂₉ 419.85 ₃₀	393.8	810.3	724.7	85. 6		0.9214	1.5025	0.6662	308
309 310		394.1 394.4	810.0 809.7	724.4 724.1	85.6 85.6		0.9208 0.9202	1.497	0.668 ₂ 0.670 ₂	309 310
310	420.15 ₃₀ 420.45 ₃₁ 420.76 ₃₀	394.8	809.5	723.9	85.6		0.9196	$\substack{1.497\\1.4925\\1.487\\5}$	0.6723	311
312 313	421.06 ₂₉	395.1 395.4	809.2 808.9	723.6 723.3		0.5909 0.5912		$1.482_{1.477_{4}}$ 1.473_{5}	0.675 0.6772	312 313
314	421.3529 421.3530 421.6529	395.7				0.5916		1.4734	$\substack{\textbf{0.675}_{\textbf{0.6772}}\\\textbf{0.6792}\\\textbf{0.6792}}$	314
315 316	421.94 ₃₀ 422.24 ₂₉ 422.53 ₂₉	396.0 396.3	808.4 808.1	722.8 722.5			0.9171 0.9165	1.468_{5} 1.463_{4}	0.681 ₂ 0.683 ₂	315 316
317	422.53 ²⁹	396.6	807.9			0.5926		1.4594	0.0002	317
318 319	$\substack{422.82\\423.11}_{29}$	396.9 397.2	807.6 807.3	722.0 721.7	85.6 85.6	0.5930 0.5933	0.9153 0.9147	$1.455 \\ 1.450 \\ 4$	$\begin{array}{c} 0.687_{3} \\ 0.690_{2}^{3} \end{array}$	318 319
	120.1129		551.0					4	2.5502	

Pressure, Pounds per Square Inch.	Temperature, Degrees Fahrenheit.	Heat of the Liquid.	Heat of Vaporisation.	Heat Equiva- lent of Inter- nal Work.	Heat Equiva- d lent of Exter- nal Work.	Entropy of the Liquid.	Entropy of Vaporization.	Specific Vol- ume, Cubic Feet per Pound.	Density, Pounds per Cubic Foot.	Pressure, Pounds per Square Inch.
							<u>T</u>		8	
320 321 322	423.40 ₂₉ 423.69 ₂₈ 423.97 ₂₉	397.5 397.8 398.1	807.1 806.8 806.6	721.5 721.2 721.0	85.6 85.6 85.6	0.5937 0.5940 0.5943	0.9135	1.446_{5} 1.441_{5} 1.436_{4}	$\begin{array}{c} 0.692 \\ 0.694 \\ 0.696 \\ 2 \end{array}$	320 321 322
323 324 325	424.26 424.5428 424.8328	398.4 398.7 399.0	806.3 806.0 805.8	720.7 720.4 720.2	85.6 85.6 85.6	0.5950	0.9123 0.9117 0.9111	1.432_4 1.428_4 1.424_5	$\begin{array}{c} 0.698_{2} \\ 0.700_{2} \\ 0.702_{3} \end{array}$	323 324 325
326 327 328	425.11 ₂₉ 425.40 ₂₉ 425.69 ₂₈	399.3 399.6 399.9	805.5 805.3 805.0	719.9 719.7 719.4	85.6 85.6 85.6	0.5960	0.9106 0.9100 0.9094	1.419_{4} 1.415_{4} 1.411_{5}	0.705 ₂ 0.707 ₂ 0.709 ₂	326 327 328
329 330 331	425.97 ₂₉ 426.26 ₂₈ 426.54 ₂₉	400.2 400.5 400.8	804.7 804.5 804.2	719.1 718.9 718.6	85.6 85.6 85.6		0.9089 0.9083 0.9077	$\substack{1.406_4\\1.402_4\\1.398_4}$	$\begin{array}{c} \textbf{0.711}_{2} \\ \textbf{0.713}_{2} \\ \textbf{0.715}_{2} \end{array}$	329 330 331
332 333 334	426.83 ₂₈ 427.11 ₂₈ 427.39 ₂₈	401.1 401.4 401.7	804.0 803.7 803.5	718.4 718.1 717.9	85.6 85.6 85.6	0.5977 0.5980 0.5984	0.9065	1.394_{5} 1.389_{4} 1.385_{4}	$\begin{array}{c} 0.717_{3} \\ 0.720_{2} \\ 0.722_{2} \end{array}$	332 333 334
335 336	427.67 427.94	402.0 402.2	803.2 803.0	717.6 717.4	85.6 85.6	0.5987 0.5990	0.9054 0.9048	1.381 1.377 ⁴	0.724 ₂ 0.726 ²	335 336

TABLE III.

SATURATED STEAM.

FRENCH AND ENGLISH CONVERSION TABLES.*

enti-		Pressure.	HEAT OF THE LIQUID.	HEAT OF VAPORIZATION.	HEAT EQUIVA- LENT OF IN- TERNAL WORK.	ئد ئ
Temperature, Degrees Centi- grade.	Millimeters of Mer- cury.	Kilograms per Square Centi- meter. Pounds per Square Inch.	Calories. B.T.U.	Calories. B.T.U.	Calories. B.T.U.	Temperature, Degrees Fahrenheit.
t	p	p p	q q	r r	ρρ	t
0 1 2	4 024 343	$\begin{bmatrix} 0.00623 & 47 \\ 0.00670 & 49 \\ 0.00719 & 53 \end{bmatrix} \begin{bmatrix} 0.0886 & 66 \\ 0.0952 & 71 \\ 0.1023 & 76 \end{bmatrix}$	1.01 1.8	595.4 1071.7 594.9 1070.8 594.4 1069.9	565.3 1017.5 564.7 1016.4 564.0 1015.3	32 33.8 35.6
3 4 5	6.541 444	$\begin{bmatrix} 0.00772 & 57 \\ 0.00829 & 60 \\ 0.00889 & 64 \end{bmatrix} \begin{bmatrix} 0.1099 & 80 \\ 0.1179 & 86 \\ 0.1265 & 91 \end{bmatrix}$		593.9 1069.0 593.3 1068.0 592.8 1067.1	563.4 1014.2 562.8 1013.1 562.2 1011.9	37.4 39.2 41
6 7 8	8.042 531 564	77 0.1000 109		592.3 1066.1 591.8 1065.2 591.2 1064.2	561.5 1010.7 560.9 1009.6 560.2 1008.5	42.8 44.6 46.4
9 10 11		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9.05 16.3 10.06 18.1 11.06 19.9	590.7 1063.3 590.2 1062.3 589.6 1061.3	559.6 1007.4 559.0 1006.2 558.3 1005.0	48.2 50 51.8
12 13 14	11.226 754 11.980 799	$\begin{smallmatrix} 0.01429 & 97 \\ 0.01526 & 97 \\ 0.01629 & 0.2171 \\ 0.01629 & 0.2317 \\ 154 \\ 0.2317 & 154 \\ 0.2$	13.06 23.5 14.06 25.3	589.1 1060.4 588.6 1059.4 588.1 1058.5	557.7 1003.9 557.1 1002.7 556.5 1001.6	53.6 55.4 57.2
15 16 17	1	$\begin{smallmatrix} 0.01737\\ 0.01852115\\ 0.01974122\\ 0.2807172\\ 0.38071$		587.6 1057.6 587.0 1056.6 586.5 1055.7	555.9 1000.5 555.2 999.4 554.6 998.3	59 60.8 62.6
18 19 20		$ \begin{bmatrix} 0.02102 \\ 0.02237 \\ 135 \\ 0.02381 \\ 151 \end{bmatrix} \begin{bmatrix} 0.2990 \\ 0.3182 \\ 19204 \\ 0.3386 \\ 215 \end{bmatrix} $		585.9 1054.7 585.4 1053.8 584.9 1052.8	553.9 997.1 553.3 996.0 552.7 994.8	64.4 66.2 68
21 22 23	$\begin{array}{c} 18.62 \\ 19.79123 \\ 21.02130 \end{array}$	$ \begin{bmatrix} 0.02532_{159} \\ 0.02691_{159} \\ 0.02858_{177} \\ 0.4065_{251} \end{bmatrix} $	1 1	584.4 1051.9 583.9 1051.0 583.3 1050.0	552.1 993.7 551.5 992.6 550.8 991.4	69.8 71.6 73.4
24 25 26	22.32 ₁₃₇ 23.69144 25.13 ₁₅₂	$ \begin{bmatrix} 0.03035_{186} \\ 0.03221_{196} \\ 0.03417_{206} \end{bmatrix} \begin{bmatrix} 0.4316_{265} \\ 0.4581_{279} \\ 0.4860_{294} \end{bmatrix} $		582.8 1049.1 582.3 1048.1 581.8 1047.2	550.2 990.3 549.5 989.1 548.9 988.0	75.2 77 78.8
		$ \begin{bmatrix} 0.03623_{218} \\ 0.03841_{218} \\ 0.546309 \\ 0.04071_{240} \end{bmatrix} \begin{bmatrix} 0.5154_{309} \\ 0.5463_{327} \\ 0.5790_{342} \end{bmatrix} $	1 1	581.2 1046.2 580.7 1045.2 580.2 1044.3	548.2 986.9 547.6 985.7 547.0 984.6	80.6 82.4 84.2
30	31.71186	0.04311 ₂₅₃ 0.6132 ₃₆₀	30.04 54.1	579.6 1043.3	546.3 983.4	86

^{*} Norm: This table gives the Metric values for one kilogram and the English values for one pound at corresponding temperatures.

TABLE III.

SATURATED STEAM.

FRENCH AND ENGLISH CONVERSION TABLES.*

enti-	HEAT EQUIVA- LENT OF EX- TERNAL WORK.		the	Specific	Volume.	DEN	SITY.	
Temperature, Degrees Centi- grade.	Calories.	B.T.U.	Entropy of the Liquid.	Cubic Meters per Kilo.	Cubic Feet Per Pound.	Kilos per Cubic Meter.	Pounds per Cubic Foot.	Temperature, Degrees Fahrenheit.
t	Apu	Apu	θ T		8	1 8	8	t
0 1 2	30.1 30.2 30.4	54.2 54.4 54.6	0.0000 2.18 0.0037 2.17 0.0074 2.16	04 206.3 ₁₃₆ 06 192.7 ₁₂₇ 09 180.0 ₁₁₈	3304 ₂₁₇ 3087 ₂₀₃ 2884 ₁₉₀	0.00485 0.00519 0.00556 39	$\begin{array}{c} 0.000303_{21} \\ 0.000324_{23} \\ 0.000347_{24}^{23} \end{array}$	32 33.8 35.6
3 4 5	30.5 30.5 30.6	54.8 54.9 55.2	$egin{bmatrix} 0.0110 & 2.15 \ 0.0146 & 2.14 \ 0.0183 & 2.13 \end{bmatrix}$	$\begin{array}{c} 13 & 168 \cdot 2 \\ 16 & 157 \cdot 2 \cdot 101 \\ 20 & 147 \cdot 1 \cdot 94 \end{array}$	2694 2518 162 2356 150		$\begin{array}{c} \textbf{0.000371}_{26} \\ \textbf{0.00039727} \\ \textbf{0.00042429} \end{array}$	37.4 39.2 41
6 7 8	30.8 30.9 31.0	55.4 55.6 55.7	0.0219 2.12 0.0256 2.11 0.0290 2.10	30 129.0	2206 ₁₃₉ 2067 ₁₃₀ 1937 ₁₂₁		$\begin{array}{c} 0.000453_{31} \\ 0.000484_{32} \\ 0.000516_{35} \end{array}$	42.8 44.6 46.4
9 10 11	31.1 31.2 31.3	56.1	0.0326 2.09 0.0361 2.08 0.0397 2.07	50 106.3	1816 1703113 1599 97	0.00882 0.00941 61 0.01002 65	$\substack{0.000551\\0.00058738\\0.000625}_{41}$	48.2 50 51.8
12 13 14	31.4 31.5 31.6		0.0433 2.06 0.0467 2.05 0.0502 2.04	76 88.1 50	1502 1411 1327 79	0.01067 0.01135 68 0.01206 77	$\begin{array}{c} 0.000666\\ 0.00070945\\ 0.00075447\end{array}$	53.6 55.4 57.2
15 16 17	31.7 31.8 31.9	57.3 57.4	0.0537 2.03 0.0571 2.03 0.0607 2.02	08 73.3 40	1248 1174 69 1105 64	0.01283 0.01364 83 0.01447 89	$\begin{array}{c} 0.000801_{51} \\ 0.00085253 \\ 0.00090556 \end{array}$	59 60.8 62.6
18 19 20	32.0 32.1 32.2	57.8 58.0	0.0641 2.01 0.0675 2.00 0.0709 1.99	45 61.3 38	1041 982 926 56 926 53	0.01536 0.01631 99 0.01730	$\begin{array}{c} 0.000961\\ 0.00101857\\ 0.00108062\\ 0.00108065 \end{array}$	64.4 66.2 68
21 22 23	32.3 32.4 32.5	58.4 58.6	0.0743 1.98 0.0776 1.97 0.0811 1.97	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.01835 0.01942116 0.02058120	$\substack{0.001145\\0.00121472\\0.001286_{75}}$	69.8 71.6 73.4
24 25 26	32.6 32.8 32.9	59.2	0.0845 1.96 0.0878 1.95 0.0911 1.94	$\begin{array}{c c} 36 & 43.40_{23}^{25} \\ 53 & 41.05_{22}^{25} \end{array}$	2 35	0.02178 0.02304132 0.02436139	$\substack{0.001361\\0.00143983\\0.00152286}$	75.2 77 78.8
27 28 29	33.0 33.1 33.2	59.7	0.0945 0.0978 1.92 0.1011 1.92	$\begin{array}{c c} 88 & 36.74_{19}^{20} \\ 07 & 34.78_{18}^{19} \end{array}$	622 589 557 29	$ \begin{array}{c} 0.02575\\ 0.02722153\\ 0.02875160 \end{array} $	$\begin{array}{c} 0.001608_{90} \\ 0.001698_{97} \\ 0.001795_{99} \end{array}$	80.6 82.4 84.2
30	33.3	59.9	0.1044 1.91	26 32.95	528 27	0.03035166	0.001894102	86

^{*} NOTE: This table gives the Metric values for one kilogram and the English values for one pound at corresponding temperatures. If refinement is desired Table I should be used.

enti-		Pressure.		HEAT OF THE LIQUID.		HEA! VAPORI	r of Zation.	HEAT E LENT OI TERNAL	QUIVA- In- Work.	
Temperature, Degrees Centi- grade.	Millimeters of Mer- cury.	Kilograms per Square Centi- meter.	Pounds per Square Inch.	Calories.	B.T.U.	Calories.	B.T.U.	Calories.	B.T.U.	Temperature, Degrees Fahrenheit.
<u>'</u>	<i>p</i>		<i>p</i>	Q	q	<i>r</i>	<i>r</i>	P	P	t
31 32 33	33.57 ₁₉₆ 35.53 ₂₀₆ 37.59 ₂₁₆	$\begin{smallmatrix} 0.04564_{2}\vec{6}6 \\ 0.04830_{281} \\ 0.05111_{293} \\ 0 \end{smallmatrix}$.6492 ₃₇₉ .6871 ₃₉₈ .7269 ₄₁₈	31.04 32.04 33.04	55.9 57.7 59.5	578.6	1042.4 1041.4 1040.4	545.7 545.1 544.4	982.2 981.0 979.9	87.8 89.6 91.4
34 35 36	39.75 42.02238 44.40250		.7687 ₄₃₉ .8126 ₄₆₀ .8586 ₄₈₂	34.03 35.03 36.03	61.3 63.1 64.9	576.9	1039.4 1038.5 1037.5	543.7 543.1 542.5	978.7 977.6 976.4	93.2 95 96.8
37 38 39				37.02 38.02 39.02	66.6 68.4 70.2	575.3	1036.5 1035.5 1034.5	541.8 541.2 540.5		98.6 100.4 102.2
40 41 42		$\begin{smallmatrix} 0.07495_{410} \\ 0.07905_{429} \\ 0.08334_{448} \\ 1 \end{smallmatrix}$		40.02 41.01 42.01	72.0 73.8 75.6	573.6 573.1	1033.5 1032.5 1031.5	539.9 539.2 538.6		104 105.8 107.6
43 44 4 5		$\begin{smallmatrix} 0.08782_{470} \\ 0.09252_{491} \\ 0.09743_{513} \\ 1 \end{smallmatrix}$		43.01 44.01 45.00	77.4 79.2 81.0	571.9	1030.5 1029.4 1028.4	537.9 537.2 536.5		109.4 111.2 113
46 47 48	1	$ \begin{bmatrix} 0.10256_{536} \\ 0.10792561 \\ 0.11353_{584} \end{bmatrix} $		46.00 47.00 48.00	82.8 84.6 86.4	570.2	1027.4 1026.4 1025.3	535.8 535.1 534.4	963.3	114.8 116.6 118.4
49 50 51				48.99 49.99 50.99	88.2 90.0 91.8	568.4	1024.3 1023.2 1022.2	533.7 533.0 532.3	959.6	120.2 122 123.8
52 53 54	1	$\begin{vmatrix} 0.115268722 \\ 0.15268755 \end{vmatrix} 2$.9701 ₉₈₈ .0689 ₁₀₃ .172 ₁₀₇	51.99 52.99 53.98	93.6 95.4 97.2	566.8	1021.2 1020.2 1019.1	531.7 531.1 530.4	956.0	125.6 127.4 129.2
55 56 57		$\begin{bmatrix} 0.16806_{818}^{763} \\ 0.17624_{851}^{2851} \end{bmatrix} 2$.279 .390 111 .506 121	54.98 55.98 56.98	100.8	565.1	1018.1 1017.1 1016.1	529.7 529.1 528.4		131 132.8 134.6
58 59 60		0.18475 ₈₈₇ 2 0.19362922 0.20284 ₉₅₈ 2	.627 .754 .885 136	57.98 58.97 59.97		563.4	1015.1 1014.1 1013.1	527.7 527.1 526.4		136.4 138.2 140
61 62 63		$\begin{bmatrix} 0.2328 & 104 \\ 107 \end{bmatrix} 3$.021 .163 142 .310 147 .310 154	60.97 61.97 62.97	111.6 113.4	561.7	1012.0 1011.0 1009.9	525.7 525.1 524.4	945.1 943.8	141.8 143.6 145.4
64 65 66		$\begin{bmatrix} 0.2435 & 112 \\ 0.2547 & 117 \\ 0.2664 & 120 \end{bmatrix}^3$		63.98 64.98 65.98	117.0	559.9	1008.9 1007.8 1006.8	523.0	942.6 941.3 940.1	
67 68 69	204.80 214.02956 223.58995	$\begin{bmatrix} 0.2784 & 126 \\ 0.2910 & 130 \\ 0.3040 & 135 \end{bmatrix} 4$.960 .139 .324 .324 192	66.98 67.98 68.98	122.4	558.2 557.6	1005.8 1004.7 1003.6	521.0 520.3	937.6	152.6 154.4 156.2
70	233.53	0.3175 140 4	.516 ₁₉₉	69.98	126.0	556.9	1 002 .5	519.5	935.0	158

	HEAT EQUIVALENT OF EXTER-		the tion.		Specific '	Volume.	Day	ISITY.	
Temperature, Degrees Centigrade.	Calories.	D.T.G.	Entropy of the Liquid.	Entropy of Vaporization.	Cubic Meters per Kilo.	Cubic Feet Per Pound.	Kilos per Cubic Meter.	Pounds per Cubic Foot.	Temperature, Degrees Fahrenheit.
t	A pu	Apu	θ	$\frac{r}{T}$	•	٠	1 8	<u>1</u> *	t
31 32 33	33.4 33.5 33.6	60.2 60.4 60.5	0.1077 0.1110 0.1142	1.8966	$31.24_{162} \\ 29.62_{154} \\ 28.08_{146}$	501 474.7 26 449.7 250 449.7 232	0.03201 0.03376175 0.03561185 0.03561196	$\begin{array}{c} 0.001996\\ 0.002107117\\ 0.002224\\ 121 \end{array}$	
34 35 36	33.7 33.8 33.9	60.7 60.9 61.1	0.1175 0.1207 0.1239	1.8728	26.62 ₁₃₇ 25.25 ₁₂₇ 23.98 ₁₂₀		$\substack{0.03757\\0.03960210\\0.04170220}$	$\begin{array}{c} 0.002345 \\ 0.002471126 \\ 0.002603137 \end{array}$	93.2 95 96.8
37 38 39	34.0 34.1 34.2	61.3 61.5 61.7	0.1272 0.1304 0.1336	1.8494	$\substack{22.78\\21.65\\107\\20.58\\101}$		$\substack{0.04390\\0.04619229\\0.0485925}$	$\begin{array}{c} 0.002740 \\ 0.002884149 \\ 0.003033157 \end{array}$	98.6 100.4 102.2
40 41 42	34.3 34.4 34.5	61.8 62.0 62.2	0.1368 0.1399 0.1431	1.8265			$\begin{array}{c} 0.0511 \\ 0.0537 \\ 28 \\ 0.0565 \\ 30 \end{array}$	$\begin{array}{c} 0.003190 \\ 0.003356166 \\ 0.003530174 \\ 0.003530181 \end{array}$	104 105.8 107.6
43 44 45	34.6 34.7 34.8	62.3 62.5 62.7	0.1463 0.1494 0.1526	1.8038	16.82 16.01 76 15.25 71	269.5 ₁₃₀ 256.5 ₁₂₁ 244.4 ₁₁₄	0.0595 ₃₀ 0.0625 ₃₁ 0.0656 ₃₂	$\begin{array}{c} 0.003711 \\ 0.003899188 \\ 0.004092193 \\ 0.004092200 \end{array}$	113
46 47 48	35.0 35.1 35.2	62.9 63.1 63.3	0.1557 0.1588 0.1619	1.7815	14.54 13.86 13.21 61	233.0 ₁₀₉ 222.1 ₁₀₄ 211.7 ₉₈	0.0688 ₃₄ 0.0722 ₃₅ 0.0757 ₃₇	$\begin{array}{c} 0.004292 \\ 0.004502210 \\ 0.004724222 \end{array}$	114.8 116.6 118.4
49 50 51	35.3 35.4 35.5	63.5 63.6 63.8	0.1650 0.1682 0.1713	1.7597	12.02 55	183.8 83	$\begin{array}{c} 0.0794_{38} \\ 0.0832_{40} \\ 0.0872_{40} \end{array}$	$\begin{array}{c} 0.00495 \\ 0.00519 \\ 25 \\ 0.00544 \\ 26 \end{array}$	120.2 122 123.8
52 53 54	35.6 35.7 35.8	64.0 64.2 64.4	0.1743 0.1774 0.1804	1.7383			$\begin{array}{c} 0.0912 \\ 0.0955 \\ 45 \\ 0.1000 \\ 46 \end{array}$	$\begin{array}{c} 0.00570_{26} \\ 0.0059628 \\ 0.00624_{29} \end{array}$	125.6 127.4 129.2
55 56 57	35.9 36.0 36.1	64.6 64.8 65.0	0.1835 0.1865 0.1895	1.7173	9.56 9.14 8.74 38		0.114452	$\begin{array}{c} 0.00653_{30} \\ 0.00683_{30} \\ 0.00713_{33} \end{array}$	131 132.8 134.6
58 59 6 0	36.2 36.3 36.4	65.2 65.4 65.6	0.1925 0.1955 0.1986	1.6967	8.36 8.00 34 7.66 32		0.1196 ₅₄ 0.1250 ₅₅ 0.1305 ₅₇	$\substack{0.00746\\0.0077933\\0.0081436}$	136.4 138.2 140
61 62 63	36.5 36.6 36.7	65.7 65.9 66.1	0.2016 0.2046 0.2075	1.6764	7.34 7.03 31 6.74 28	117.6 112.7 108.0 45		$\begin{array}{c} 0.00850_{37} \\ 0.00887_{39} \\ 0.00926_{40} \end{array}$	141.8 143.6 145.4
64 65 66	36.8 36.9 37.0	66.3 66.5 66.7	0.2105 0.2135 0.2164	1.6563	6.19 25 5.94 24	38	0.1548 0.161569 0.168470	$\begin{array}{c} 0.00966\\ 0.0100842\\ 0.0105143\\ \end{array}$	147.2 149 150.8
67 68 69	37.1 37.2 37.3	66.9 67.1 67.3	0.2194 0.2223 0.2253	1.6366	$5.70 \\ 5.47 \\ 23 \\ 5.25 \\ 21$	84.1 35	0.1754 ₇₄ 0.1828 ₇₇ 0.1905 ₇₉	$\substack{0.01095\\0.0114247\\0.0118950}$	152.6 154.4 156.2
70	37.4	67.4	0.2282	1.6235	5.04 20	80.7 32	0.1984 ₈₃	0.0123951	158

		Pressure.	HEAT THE L	r or iquid.	HEAT Vaporiz	OF ZATION.	HEAT E LENT O TERNAL	F IN-	قد ج
Temperature, Degrees Centigrade.	Millimeters of Mer- cury.	Kilograms per per Square Centi- meter. Pounds per Square Inch.	Calories.	B.T.U.	Calories.	B.T.U.	Calories.	B.T.U.	Temperature, Degrees Fahrenheit.
t	p	p p	q	q 		r	ρ	ρ	t
71 72 73	243.8 254.5 265.6 115	0.3315 ₁₄₅ 0.3460 ₁₅₁ 0.3611 ₁₅₆ 4.715 ₂₀₆ 4.921 ₂₁₅ 5.136 ₂₂₂	70.98 71.99 72.99	127.8 129.6 131.4	5 55.8	1001.5 1000.4 999.4	518.8 518.1 517.4	932.6	159.8 161.6 163.4
74 75 76	$\begin{array}{c} 277.1 \\ 289.0119 \\ 301.3 \\ 127 \end{array}$	$\begin{bmatrix} 0.3767_{162} & 5.358_{231} \\ 0.3929_{167} & 5.589_{237} \\ 0.4096_{173} & 5.826_{246}^{237} \end{bmatrix}$	73.99 74.99 76.00	133.2 135.0 136.8	554.6 554.0 553.4		516.7 516.0 515.3	928.8	165.2 167 168.8
77 78 79	314.0 ₁₃₂ 327.2 ₁₃₇ 340.9 ₁₄₂	$\begin{bmatrix} 0.4269_{180} & 6.072_{255} \\ 0.4449_{186} & 6.327_{255} \\ 0.4635_{193} & 6.592_{275} \end{bmatrix}$	77.00 78.00 79.01	138.6 140.4 142.2		995.2 994.1 993.0	514.7 514.0 513.3	925.2	170.6 172.4 174.2
80, 81 82	355.1 369.7146 384.9152	$\begin{bmatrix} 0.4828_{198} \\ 0.5026_{207} \\ 0.5233_{212} \end{bmatrix} \begin{bmatrix} 6.867_{283} \\ 7.150_{283} \\ 7.443_{302} \end{bmatrix}$	80.01 8r.02 82.02	145.8	5 50 .5	991.9 990.8 989.8	512.6 511.9 511.2	921.3	176 177.8 179.6
83 84 85	400.5 416.7168 433.5 173	$\begin{bmatrix} 0.5445_{220} & 7.745_{313} \\ 0.5665_{229} & 8.058325 \\ 0.5894_{235} & 8.383_{334} \end{bmatrix}$	83.03 84.03 85.04	149.4 151.2 153.1	549.3 548.7 548.1	988.7 987.6 986.5	510.5 509.8 509.1		181.4 183.2 185
86 87 88	450.8 468.6 185 487.1	$\begin{bmatrix} 0.6129 \\ 0.6371242 \\ 0.6623258 \end{bmatrix} \begin{bmatrix} 8.717_{345} \\ 9.062345 \\ 9.419368 \end{bmatrix}$	86.04 87.05 88.06	154.9 156.7 158.5	547.4 546.8 546.2	985.4 984.3 983.2	508.3 507.6 506.9	913.7	186.8 188.6 190.4
89 90 91	506.1 ₁₉₇ 525.8 ₂₀₃ 546.1 ₂₁₀	$\begin{bmatrix} 0.6881_{268} & 9.787_{380} \\ 0.7149268 & 10.167_{393} \\ 0.7425_{285} & 10.560_{406} \end{bmatrix}$		160.3 162.1 163.9	545.6 544.9 544.3	980.9	506.2 505.4 504.7	909.9	192.2 194 195.8
92 93 94	567.1 ₂₁₆ 588.7 ₂₂₃ 611.0 ₂₃₀	$\begin{bmatrix} 0.7710_{294} & 10.966_{418} \\ 0.8004_{303} & 11.384_{431} \\ 0.8307_{313} & 11.815_{445} \end{bmatrix}$	92.08 93.09 94.10	165.7 167.5 169.3		978.7 977.6 976.5	504.0 503.3 502.6	906.0	197.6 199.4 201.2
95 96 97	634.0 ₂₃₇ 657.7 ₂₄₄ 682.1 ₂₅₂	$\begin{bmatrix} 0.8620_{322} \\ 0.8942322 \\ 0.9274332 \\ 13.190488 \end{bmatrix}$	95.11 96.12 97.12	171.2 173.0 174.8	541.9 541.2 540.6	975.4 974.2 973.1	501.9 501.1 500.4		203 204.8 206.6
98 99 100	707.3 ₂₆₀ 733.3 ₂₆₇ 760.0 ₂₇₅	$\begin{bmatrix} 0.9616_{354} & 13.678_{502} \\ 0.9970363 & 14.180502 \\ 1.0333_{374} & 14.697_{532} \end{bmatrix}$	98.13 99.14 100.2	176.6 178.5 180.3	539.3	971.9 970.8 969.7	499.6 498.9 498.2		208.4 210.2 212
101 102 103	787.5 ₂₈₄ 815.9 ₂₉₂ 845.1 ₃₀₀	$\begin{bmatrix} 1.0707_{386} \\ 1.1093_{397} \\ 1.1490_{408} \\ \end{bmatrix} \begin{bmatrix} 15.229_{549} \\ 15.778_{564} \\ 16.342_{581} \\ \end{bmatrix}$	101.2 102.2 103.2	182.1 183.9 185.7	538.1 537.4 536.8	968.5 967.3 966.2	497.5 496.8 496.1	894.1	213.8 215.6 217.4
104 105 106		$\begin{bmatrix} 1.1898_{421} & 16.923_{599} \\ 1.2319433 & 17.522615 \\ 1.2752444 & 18.137_{632} \end{bmatrix}$		187.6 189.4 191.2	535.6		495.4 494.7 493.9	890.3 889.0	222.8
107 108 109	970.6 ₃₃₇ 1004.3 ₃₄₅ 1038.8 ₃₅₇	$\begin{bmatrix} 1.3196_{457} \\ 1.3653_{470} \\ 1.4123_{485} \end{bmatrix} \begin{bmatrix} 18.769_{651} \\ 19.420_{669} \\ 20.089_{688} \end{bmatrix}$	107.2 108.2 109.3	193.0 194.8 196.7	533.6	960.5	493.1 492.4 491.6	886.3	224.6 226.4 228.2
110	1074.5 ₃₆₆	1.4608498 20.777709	110.3	198.5	532.3	958.1	490.9	883.6	230

	Equiv or E	XTER-	the	ion.	Specific	Volume.	DE	NSITY.	نبئ
Temperature, Degrees Centigrade.	Calories.	O.H.	Entropy of t Liquid.	Entropy of Vaporization.	Cubic Meters per Kilo.	Cubic Feet per Pound.	Kilos per Cubic Meter.	Pounds per Cubic Foot.	Temperature, Degrees Fahrenheit.
t	Apu	Apu	θ	$\frac{r}{T}$		8	1 8	1 8	t
71 72 73	37.6 37.7 37.8	67.6 67.8 68.0	0.2311 0.2340 0.2369	1.6107	4.647181 4.466172	77.5 ₃₁ 74.4 ₂₉ 71.5 ₂₇	0.2067 0.2152 85 0.2239 87 0.2239 90	0.01290 0.01344 54 0.01398 55	159.8 161.6 163.4
74 75 76	37.9 38.0 38.1	68.2 68.5 68.6	0.2398 0.2427 0.2456	1.5918	101	68.8 ₂₆ 66.225 63.7 ₂₅	$\begin{array}{c} 0.2329 & 92 \\ 0.2421 & 96 \\ 0.2517 & 99 \end{array}$	0.01453 0.01510 0.01570 60 64	165.2 167 168.8
77 78 79	38.2 38.3 38.4	68.8 68.9 69.1	0.2484 0.2513 0.2541	1.5731	$3.822 \\ 3.676139 \\ 3.537133$	$\begin{array}{c} \mathbf{61.2_{24}} \\ \mathbf{58.8_{22}} \\ \mathbf{56.6_{21}} \end{array}$	$\substack{\textbf{0.2616}\\0.2720\\\textbf{107}\\\textbf{0.2827}\\111}$	0.01634 0.01700 67 0.01767 68	170.6 172.4 174.2
80 81 82	38.5 38.6 38.7	69.3 69.5 69.7	0.2570 0.2598 0.2626	1.5548	$3.404_{127} \ 3.277_{121} \ 3.156_{116}$	$54.5_{20} \\ 52.5_{19} \\ 50.6_{19}$	$\begin{array}{c} \textbf{0.2938} \\ \textbf{0.3052114} \\ \textbf{0.3168116} \\ \textbf{0.3168121} \end{array}$	$\begin{array}{c} 0.01835 \\ 0.01905 \\ 71 \\ 0.01976 \\ 77 \end{array}$	176 177.8 179.6
83 84 85	38.8 38.9 39.0	69.9 70.0 70.2	0.2654 0.2682 0.2711	1.5366			$\substack{0.3289\\0.3414\\127\\0.3541\\131}$	0.02053 0.02131 0.02211 80	181.4 183.2 185
86 87 88	39.1 39.2 39.3	70.4 70.6 70.7	0.2739 0.2767 0.2 795	1.5187	2.723 2.627 93 2.534 90	43.62 42.08154 40.59149	$\substack{0.3672\\0.3807135\\0.3946139\\0.3946145}$	0.02293 0.02376 0.02463 91	186.8 188.6 190.4
89 90 9 1	39.4 39.5 39.6	70.9 71.0 71.3	0.2823 0.2851 0.2879	1.5010	2.358 83	39.15 ₁₃₈ 37.77 ₁₃₂ 36.45 ₁₂₆		0.02554 0.02648 95 0.02743 99	192.2 194 195.8
92 93 94	39.7 39.8 39.9	71.5 71.6 71.8	0.2906 0.2934 0.2961	1.4836	2.197 2.122 75 2.050 70	$35.19_{119} \\ 34.00_{114} \\ 32.86_{111}$	0.4552 0.4713161 0.4878172		197.6 199.4 201.2
95 96 97	40.0 40.1 40.2	72.0 72.1 72.3	0.2989 0.3016 0.3043	1.4666		31.75 ₁₀₈ 30.67 ₁₀₄ 29.63 99	0.505 ₁₈ 0.523 ₁₈ 0.541 ₁₉	$\substack{0.03149\\0.03260111\\0.03375115}$	203 204.8 206.6
98 99 100	40.3 40.4 40.5	72.5 72.6 72.8	0.3070 0.3097 0.3125	1.4496	1.728 57	28.64 27.69 95 26.78 91 88	0.560 ₁₉ 0.579 ₁₉ 0.598 ₂₀	$\begin{smallmatrix} 0.03492\\ 0.0361119\\ 0.03734123\\ 0.03734127 \end{smallmatrix}$	208.4 210.2 212
101 102 103	40.6 40.6 40.7	73.0 73.2 73.3	0.3152 0.3179 0.3205	1.4330 1.4275	1.564 50 1.514 49	25.90 84 25.06 81 24.25 78	$\begin{array}{c} 0.618_{21} \\ 0.639_{22} \\ 0.661_{22} \end{array}$	$\begin{smallmatrix} 0.03861 \\ 0.03990 \\ 134 \\ 0.04124 \\ 137 \end{smallmatrix}$	213.8 215.6 217.4
104 105 106	40.8 40.9 41.0		0.3232 0.3259 0.3286	1.4165	1.419	23.47 74 22.73 72 22.01 70	23	$\begin{array}{c} 0.04261 \\ 0.04400139 \\ 0.04543149 \end{array}$	219.2 221 222.8
107 108 109	41.1 41.2 41.3		0.3312 0.3339 0.3365	1.4003		21.31 20.64 19.99 62	$\begin{array}{c} 0.751 \\ 0.77625 \\ 0.80126 \end{array}$	$\substack{0.04692\\0.04845153\\0.0500\\16}$	224.6 226.4 228.2
110	41.4	74.5	0.3392	1.3895	1.209 37	19.37 ₆₀	0.82726	0.051617	230

. i		Pressure.	HEAT THE L	r or iquid.	HEAT VAPORI	OF ZATION.	HEAT I	of In-	ë, Fah-
Temperature, Degrees Centigrade.	Millimeters of Mer- cury.	Kilograms per Square Square Centi- meter. Pounds per Square Inch.	Calories.	B.T.U.	Calories.	B.T.U.	Calories.	B.T.U.	Temperature, Degrees Fah- renheit.
ť	p	р р	q	q	7	r	P	P	t
111 112 113	1111.1 ₃₇₆ 1148.7 ₃₈₇ 1187.4 ₃₉₇	1.5106 ₅₁₁ 1.5617 ₅₁₇ 1.6144 ₅₄₀ 22.962 ₇₆₇	111.3 112.3 113.3	202.1	530.9		490.2 489.4 488.7	880.9	231.8 233.6 235.4
114 115 116	1227.1 1267.9 1309.8 430	1.6684 ₅₅₄ 1.7238 ₅₇₀ 23.729 ₇₈₈ 24.518 ₈₁₀ 1.7808 ₅₈₅ 25.328 ₈₃₂	114.3 115.3 116.4	207.6		953.3 952.1 950.8	487.9 487.1 486.3	876.8	237.2 239 240.8
117 118 119	1352.8 1397.0 454 1442.4 465	1.8393 ₆₀₀ 26.160 ₈₅₈ 1.8993 ₆₁₈ 27.015858 1.9611 ₆₃₂ 27.893 ₈₉₈	î	213.0	526.9	949.5 948.4 947.2	485.5 484.8 484.0	872.6	242.6 244.4 246.2
122	1488.9 1536.6 491 1585.7 503	2.0243 ₆₄₈ 28.792 ₉₂₃ 2.0891665 2.1556 ₆₈₅ 30.664 ₉₇₃		218.5	524.9		483.4 482.6 481.8	868.6	248 249.8 251.6
	1636.0 ₅₁₅ 1687.5 ₅₃₀ 1740.5 ₅₄₂	2.2241 ₇₀₂ 31.637 ₁₀₀ 2.2943 ₇₂₀ 32.64 102 2.3663 ₇₃₈ 33.66 108	123.5 124.5 125.5	224.1	523.5 522.8 522.1	942.3 941.0 939.8	481.0 480.2 479.4		253.4 255.2 257
	1794.7 1850.3556 1907.3585	2.4401 ₇₅₅ 34.71 2.5156 ₇₇₅ 35.78 103 2.5931 ₇₉₅ 36.88 113	128 6	229.5	520.7	938.6 937.3 936.1	478.6 477.8 477.0	860.2	258.8 260.6 262.4
	1965.8 2025.6598 2086.9613	2.6726 ₈₁₄ 38.01 2.7540 ₈₃₃ 39.17 116 2.8373 ₈₅₄ 40.36 121	130.0	235.1	519.3 518.6 517.9	934.8 933.6 932.3	476.3 475.5 474.7	856.0	2 64 .2 266 267.8
132 133 134	2149.8 2214.0660 2280.0675	2.9227 ₈₇₄ 41.57 3.0101898 3.0999917 42.81 128 44.09 130	124.7	240.6	516.6	931.1 929.8 928.5	474.0 473.3 472.5	851.8	269.6 271.4 273.2
135 136 137	2347.5 2416.5708 2487.3724	$\begin{bmatrix} 3.1916_{938} \\ 3.2854_{962} \\ 3.3816_{985} \end{bmatrix} & 45.39_{136} \\ 46.73_{136} \\ 48.10_{146} \end{bmatrix}$	137 7	246.0	515.1 514.4 513.7	927.2 925.9 924.6	471.6 470.8 470.1		275 276.8 278.6
	2559.7 ₇₄₁ 2633.8 ₇₅₇ 2709.5 ₇₇₆	$\begin{bmatrix} 3.4801 \\ 3.581 \\ 3.684 \\ 105 \end{bmatrix} \begin{bmatrix} 49.50 \\ 50.93 \\ 146 \\ 52.39 \\ 150 \end{bmatrix}$	140 8	251.6		923.3 922.1 920.7	469.3 468.5 467.6	844.6 843.3 841.8	280 . 4 282 . 2 284
141 142 143	2787.1 ₇₉₃ 2866.4 ₈₁₃ 2947.7 ₈₂₈	3.789 108 53.89 154 3.897 111 55.43 157 4.008 113 57.00 160	143.9	257.1		918.1	466.8 466.1 465.3	838.9	285.8 287.6 289.4
144 145 146	3030.5 ₈₄₈ 3115.3 ₈₆₈ 3202.1 ₈₈₇	4.121 115 58.60 164 4.236 118 60.24 168 4.354 120 61.92 173	144.9 145.9 146.9	262.7	507.8	914.1	463.6	834.5	291.2 293 294.8
	3290.8 ₉₀₅ 3381.3 ₉₂₇ 3474.0 ₉₄₇	4.474 123 63.64 178 4.597 126 65.39 178 4.723 129 67.18 183	148.0 149.0 150.0	268.2	505.6	910.1		830.1	296.6 298.4 300.2
150	3568.7 ₉₆₆	4.852 132 69.01 187	151.0	271.9	504.1	907.4	459.5	827.2	302

6 6	HE Equiv	ALENT	the	on.	Specific '	VOLUME.	DE	NSITY.	
Temperature, Degrees Centigrade.	Calories.	B.T.U.	Entropy of Liquid.	Entropy of Vaporization.	Cubic Meters per Kilo.	Cubic Feet per Pound.	Kilos per Cubic Meter.	Pounds per Cubic Foot.	Temperature, Degrees Fahrenheit,
:	Apu	Apu	θ	<u>†</u>	8	8	1 8	<u>1</u> 8	t
111 112 113	41.4 41.5 41.6	74.6 74.8 75.0	0.3418 0.3445 0.3471	1.3789	1.13635	18.77 18.2056 17.6454	0.853 ₂₇ 0.880 ₂₈ 0.908 ₂₈	$\substack{0.0533\\0.055017\\0.056718}$	231.8 233.6 235.4
114 115 116	41.7 41.8 41.9	75.1 75.3 75.4	0.3498 0.3524 0.3550	1.3631	$\substack{1.068\\1.036\\31\\1.005\\30}$	17.10 16.5951 16.0940	$\substack{0.936_{29}\\0.965_{30}\\0.995_{31}}$	$\substack{0.0585\\0.060319\\0.062219}$	237.2 239 240.8
117 118 119	42.0 42.1 42.2	75.6 75.8 75.9	0.3576 0.3602 0.3628	1.3475	0.9746 ₂₈₆ 0.9460 ₂₇₇ 0.9183 ₂₆₉	15.61 15.1645 14.7244	$\substack{1.026\\1.05731\\1.089\\33}$	$\substack{0.0641\\0.065920\\0.067921}$	242.6 244.4 246.2
120 121 122	42.2 42.3 42.4	76.0 76.2 76.4	0.3654 0.3680 0.3705	1.3321			$1.122_{34} \\ 1.156_{34} \\ 1.190_{36}$	$\substack{0.0700 \\ 0.0721 \\ 22 \\ 0.0743 \\ 22}$	248 249.8 251.6
123 124 125	42.5 42.6 42.7	76.5 76.7 76.8	0.3731 0.3756 0.3782	1.3167	0.7924_{226}^{234} 0.7698_{219}^{219}		$1.226_{36} \\ 1.26237 \\ 1.299_{38}$	$\substack{0.0765_{23}\\0.0788_{23}\\0.0811_{24}}$	253.4 255.2 257
126 127 128	42.8 42.9 43.0	77.0 77.1 77.3	0.3807 0.3833 0.3858	1.3017	$\substack{0.7479\\0.7267\\204\\0.7063\\196}$	$11.98_{11.6432} \\ 11.32_{32}$	$1.337_{39} \\ 1.376_{40} \\ 1.416_{40}$	$\substack{0.0835_{24}\\0.0859_{24}\\0.0883_{26}}$	258.8 260.6 262.4
129 130 131	43.0 43.1 43.2	77.4 77.6 77.7	0.3884 0.3909 0.3934	1.2868	0.6493_{178}^{184}	10.4028	$\substack{1.456\\1.498\\42\\1.540\\43}$	$\substack{0.0909_{26}\\0.0935_{26}\\0.0961_{27}}$	264.2 266 267.8
132 133 134	43.3 43.3 43.4	77.9 78.0 78.1	0.3959 0.3985 0.4010		$\substack{0.6315\\0.6142173\\0.5974168\\162}$	10.12 9.83928 9.569260		$\substack{\textbf{0.0988}_{\textbf{28}}\\\textbf{0.1016}_{\textbf{29}}\\\textbf{0.1045}_{\textbf{29}}}$	269.6 271.4 273.2
135 136 137	43.5 43.6 43.6	78.3 78.4 78.5	0.4035 0.4060 0.4085	1.2574	$0.5656_{150}^{150}\\0.5506_{145}^{150}$	8.820_{233}^{240}	1.816_{49}^{48}	$\begin{array}{c} 0.1074_{30} \\ 0.1104_{30} \\ 0.1134_{31} \end{array}$	275 276.8 278.6
138 139 140	43.7 43.8 43.9	78.7 78.8 78.9	0.4110 0.4135 0.4160	1.2431	133	8.587 8.360 220 8.140 214		$\substack{0.1165\\0.1196\\33\\0.1229\\33}$	280.4 282.2 284
141 142 143	43.9 44.0 44.0	79.1 79.2 79.3	0.4185 0.4209 0.4234	1.2288 1.2241	$\substack{0.4948\\0.4819129\\0.4694\\120}$	7.926 ₂₀₇ 7.719 ₂₀₀ 7.519 ₁₉₃	$2.021_{54} \\ 2.075_{55} \\ 2.130_{56}$	$\substack{0.1262\\0.129634\\0.133035}$	285.8 287.6 289.4 291.2
144 145 146	44.2 44.2 44.3	79.5 79.6 79.7	0.4259 0.4283 0.4307	1.2147	0.4343_{111}^{114}		$\substack{ 2.186 \\ 2.24458 \\ 2.303}_{60}$	$\begin{array}{c} 0.136536 \\ 0.140136 \\ 0.143738 \end{array}$	293 294.8
147 148 149	44.4 44.4 44.5	80.0 80.1	0.4332 0.4356 0.4380	1.2008 1.1962	$\substack{0.4125107\\0.4022103\\101}$	6.780 ₁₇₁ 6.609 ₁₆₆ 6.443 ₁₆₁	$2.363_{12.42462}$ 2.486_{64}	$\substack{0.1475\\0.151339\\0.1552}_{40}$	296.6 298.4 300.2
150	44.6	80.2	0.4405	1.1916	0.3921 ₉₇	6.282 ₁₅₆	2.550 ₆₅	0.159240	302

Genti-		Pressure.	HEAT OF THE LIQUID.	HEAT OF VAPORIZATION.	HEAT EQUIVA- LENT OF IN- TERNAL WORK.	1
Temperature, Degrees Centi- grade.	Millimeters of Mer- cury.	Kilograms per Square Centi- meter. Pounds per Square Inch.	Calories. B.T.U.	Calories. B.T.U.	Calories. B.T.U.	Temperature, Degrees Fahrenheit.
t	р	p p	q q	r	P P	t
151 152 153	3665.3 988 3764.1 1008 3864.9 1031	4.984 ₁₃₄ 5.118 ₁₃₇ 5.255 ₁₄₀ 70.88 ₁₉₁ 72.79 ₁₉₅ 74.74 ₁₉₉	152.1 273. 153.1 275. 154.1 277.	6 502.6 904.7	457.9 824.2	303.8 305.6 307.4
154 155 156	3968 4073105 4181109	5.395 ₁₄₃ 5.538 ₁₄₆ 5.684 ₁₄₉ 76.73 ₂₀₃ 78.76 ₂₀₈ 80.84 ₂₁₂	155.1 279. 156.2 281. 157.2 283.	1 500.3 900.5	455.4 819.6	309.2 311 312.8
157 158 159	4290 4402112 4517115	5.833 ₁₅₂ 5.985 ₁₅₆ 6.141 ₁₅₉ 82.96 ₂₁₆ 85.12 ₂₁₆ 87.33 ₂₂₆	158.2 284. 159.3 286. 160.3 288.	7 498.1 896.5	453.0 815.3	314.6 316.4 318.2
160 161 162	4633 4752119 4874122 4874 ₁₂₄	6.300 ₁₆₂ 6.462 ₁₆₆ 6.628 ₁₆₈ 89.59 ₂₃₀ 91.89 ₂₃₆ 94.25 ₂₄₀		2 495.7 892.3	450.4 810.7	320 321.8 323.6
163 164 165	4998 5124126 5253129	$\begin{array}{c} 6.796 \\ 6.967171 \\ 7.142175 \\ 178 \end{array} \begin{array}{c} 96.65 \\ 99.09244 \\ 101.58253 \end{array}$	166.5 299.	7 493.4 888.1	447.9 806.2	325.4 327.2 329
166 167 168	5384 5518134 5655 ₁₃₉	$\begin{array}{c} 7.320 \\ 7.502182 \\ 7.688186 \\ 109.35269 \end{array}$	167.5 301. 168.5 303. 169.5 305.	3 491.1 883.9	445.4 801.7	330.8 332.6 334.4
169 170 171	5794 5937144 6081148	$\begin{bmatrix} 7.877 \\ 8.071194 \\ 8.268197 \\ 8.268201 \end{bmatrix} 112.04 \\ 114.7925 \\ 117.59280 \\ 286$	172.6 310.	9 488.7 879.6	442.8 797.0	336.2 338 339.8
172 173 174	6229 6379150 6533154 156	$\begin{bmatrix} 8.469 \\ 8.673209 \\ 8.882212 \end{bmatrix} \begin{bmatrix} 120.45 \\ 123.36291 \\ 126.33302 \end{bmatrix}$		5 486.3 875.4	440.2 792.5	341.6 343.4 345.2
175 176 177	6689 6848159 7010162	$ \begin{array}{c} 9.094 \\ 9.310216 \\ 132.43308 \\ 9.531221 \\ 135.56319 \end{array} $	110.0 321.	0 483.9 871.0	437.7 787.8	347 348.8 350.6
178 179 180		$ \begin{array}{c} 9.755 \\ 9.983228 \\ 10.216233 \\ 10.216237 \end{array} \begin{array}{c} 138.75 \\ 142.00330 \\ 145.30337 \end{array} $		6 481.4 866.6	435.0 783.1	352.4 354.2 356
181 182 183	7688 7866178 8046180	$ \begin{array}{c} 10.453 \\ 10.695242 \\ 10.940249 \\ \end{array} \begin{array}{c} 148.67 \\ 152.11349 \\ 155.60355 \\ \end{array} $		2 479.0 862.2 0 478.2 860.7	432.5 778.4 431.6 776.9	357.8 359.6 361.4
184 185 186		$ \begin{array}{c} 11.189 \\ 11.444255 \\ 11.703264 \\ \end{array} \begin{array}{c} 159.15 \\ 162.77362 \\ 166.46375 \\ \end{array} $		8 476.6 857.7	429.9 773.7	363.2 365 366.8
187 188 189			1 1	4 474.0 853.2	427.2 768.9	368.6 370.4 372.2
190	9 4 04 20 8	12.786 ₂₈₂ 181.85 ₄₀₂	192.3 346.	1 472.3 850.2	425.4 765.8	374

	HEAT		1						
Temperature, Degrees Centi- grade.	OF EX	TER-	the	ion.	Specific '	VOLUME.		NSITY.	ندی
atur Ses		l .	Entropy of Liquid.	Entropy of Vaporization.	Cubic Meters per Kilo.	eet d.	Kilos per Cubic Meter.	ž.	Temperature, Degrees Fahrenheit.
rade	Calories	T.U.	t p	ropy apo	oic feter er B	Cubic Feet per Pound.	os Jubic feter	Pounds Cubic Foot.	pper apre
Ter	ెక్	œ.	Б		Cat	Cut	Kije	Por J	Ten
t	Apu	Apu	θ	$\frac{r}{T}$	8	8	1/8	1 8	t
151	44.6	80.4	0.4429	1.1870	0.382405	6.126,50	2.615 67	0.163249	303.8
152 153	44.7 44.8	80.5 80.6	0.4453 0.4477		$\substack{0.3824\\0.372995\\0.3637_{89}}$	6.126 5.974152 5.826143	2.682 67 2.750 68	$\substack{0.1632\\0.1674\\42\\0.1716\\43}$	305.6 307.4
154	44.8	80.7	0.4501			5.683.0=	9 919		309.2
155 156	44.9 45.0	80.9 81.0	0.4525	1.1688	$\substack{0.3548\\0.346385\\0.338082}$	5.683 ₁₃₇ 5.546 ₁₃₃ 5.413 ₁₃₁	2.888 70	$\substack{0.1759\\0.1803\\44\\0.1847\\46}$	311 312.8
1			0.4549				13		
157 158	45.0 45.1	81.1 81.2	0.4573 0.4596	1.1554	$\substack{0.3298\\0.321878\\0.314077}$	$\begin{array}{c} 5.282 \\ 5.154 \\ 125 \\ 5.029 \\ 123 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.1893 \\ 0.1940 \\ 48 \\ 0.1988 \\ 50 \end{array}$	314.6 316.4
159	45.2	81.4	0.4620	1.1509			3.185 80		318.2
160 161	45.3 45.3	81.5 81.6	0.4644 0.4668		$0.3063_{74} \\ 0.298933$	4.906 ₁₁₇	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$0.2038_{50} \\ 0.2088_{50}$	320 321.8
162	45.4	81.7	0.4692		$\substack{0.3063\\0.2989\\69\\0.2920\\65}$	$\substack{4.906\\4.789\\112\\4.677\\106}$	3.425 78	$\substack{0.2038\\0.208850\\0.213850}$	323.6
163	45.5	81.8		1.1333	0.2855	4.571	3.503 79	0.2188	325.4
164 165	45.5 45.6	81.9 82.0	0.4739 0.4763		$\substack{0.2855\\0.279263\\0.2729}_{63}$	4.571 4.469101 4.368100	3.582 82 3.664 87	$\substack{0.2188\\0.223850\\0.228951}$	327.2 329
166	45.6	82.1	0.4786	1.1202		4.268100	3.751	0.2343 0.239956	330.8
167 168	45.7 45.7	82.2 82.4	0.4810 0.4833		$\substack{0.2666\\0.260363\\0.254060}$	4 070 98	3 937 95	0.239958 0.245759	332.6 334.4
169	45.8	82.5	0.4857			2 075	4 022		336.2
170	45.9	82.6	0.4880	1.1029	$\substack{0.2480\\0.242357\\0.236854}$	3.883 80	4.127 95	$\substack{0.2516\\0.257561\\0.263660}$	338
171	46.0	82.7	0.4903		0.230854	3.794 85	4.223 99		339.8
172 173	46.0 46.1	82.8 82.9	0.4926 0.4949		$\substack{0.2314 \\ 0.226252 \\ 0.221248}$	3.709 3.626 81	4.322 4.421	$\substack{0.2696\\0.275862\\0.282163}$	341.6 343.4
174	46.1	83.0	0.4972	1.0859	0.2212_{48}^{50}	3.545 78	4.421 99 4.421 100 4.521 100		345.2
175 176	46.2 46.2	83.1 83.2	0.4995 0.5018		$0.2164_{47} \\ 0.2117_{45}$	3.467 3.391 76	4.621 4.724103	0.288465	347 348.8
177	46.3	83.3	0.5041		0.2072_{45}^{45}	3.318 73	$\substack{\frac{4.621}{4.724} \\ 103 \\ 4.826} \\ 107$	$\substack{0.2884\\0.294965\\0.301466}$	350.6
178	46.3	83.4	0.5064		0.202744	3.247 70	$\substack{4.933\\5.04\\5.15\\12}$	$0.3080_{68} \\ 0.3148_{60}$	352.4
179 180	46.4 46.4	83.5 83.6	0.5087 0.5110		$\begin{array}{c} 0.2027_{44} \\ 0.1983_{42} \\ 0.1941_{42} \end{array}$	3.177 68 3.109 68	5.04_{11} 5.15_{12}	0.3148_{69} 0.3217_{71}	354.2 356
181	46.5	83.7	0.5133	1.0567		3 041	5.27	0.3288,	357.8
182 183	46.5 46.6	83.8 83.8	0.5156		$\substack{0.1899\\0.1857\\40\\0.1817\\39}$	2.974 63	$5.27 \\ 5.3811 \\ 5.5012$	$\substack{0.3288\\0.336274\\0.343575}$	359.6 361.4
184					0.101.39	0.2		0.010075	363.2
185	46.6 46.7	84.0	0.5201 0.5224	1.0403	$\begin{array}{c} 0.1778_{38} \\ 0.1740_{38} \\ 0.1702_{36} \end{array}$	2.849 2.787 60	$5.62_{13} \\ 5.75_{13} \\ 5.88_{12}$	$\substack{0.3510_{78}\\0.358879\\0.3667_{79}}$	365
186	46.7		0.5246			2.727 58			366.8
187 188	46.8 46.8		0.5269 0.5291		$\substack{0.1666\\0.163234\\0.1598\\33}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 6.00 \\ 6.13 \\ 13 \\ 6.26 \\ 13 \end{array}$	$\substack{0.3746\\0.3826\\0.3906\\83}$	368.6 370.4
189	46.9		0.5314		0.1598_{33}^{34}	2.560 53	6.26_{13}^{13}	0.3906_{83}^{80}	372.2
190	46.9	84.4	0.5336	1.0200	$\boldsymbol{0.1565}_{\boldsymbol{32}}$	2.507 ₅₁	6.3913	0.3989_{83}	374
<u>'</u>							<u> </u>		

Genti-		Pressure.		HEAT THE L	OF QUID.	HEAT VAPORI		HEAT E LENT OF NAL W	INTER-	ند ت
Temperature, Degrees Centi- grade.	Millimeters of Mercury.	Kilograms per Square Centi- meter.	Pounds per Square Inch.	Calories.	B.T.U.	Calories.	B.T.U.	Calories.	B.T.U.	Temperature, Degrees Fahrenheit.
*	<i>p</i>	p	p	q	g	-	<i>r</i>	٩	ρ	ŧ
191 192 193	9612 9823211 10038218	13.068 ₂₈₇ 13.355 ₂₉₂ 13.647 ₂₉₇	5.87 ₄₀₉ 9.96 ₄₁₅ 4.11 ₄₂₂	193.3 194.4 195.4	347.9 349.8 351.7	471.5 470.6 469.8	848.7 847.1 845.6	424.5 423.6 422.8	762.5	375.8 377.6 379.4
194 195 196	$\substack{10256\\10479\\226\\10705\\229}$	13.944 ₃₀₃ 14.247 ₃₀₇ 14.554 ₃₁₂	8.33 2.64431 7.01444	196.4 197.5 198.5	353.5 355.4 357.3	468.9 468.1 467.2	844.1 842.5 841.0	421.9 421.0 420.1	757.7	381.2 383 384.8
197 198 199	$\substack{10934 \\ 11168234 \\ 11406241}$	14.866 ₃₁₈ 21 15.184 ₃₂₃ 21 15.507 ₃₂₈ 22			359.2 361.1 362.9	466.4 465.6 464.7	839.5 838.0 836.4	418.4	753.0	386.6 388.4 390.2
200 201 202	11647 11893249 12142253	15.835 ₃₃₄ 16.169339 16.508344			364.8 366.7 368.5	463.8 462.9 462.1	834.8 833.3 831.8	416.5 415.6 414.8	746.6	393.8 395.6
203 204 205	$\substack{12395 \\ 12653258 \\ 12915262 }$	16.852 ₃₅₀ 17.202 ₃₅₆ 24 17.558 ₃₆₃ 24			370.4 372.3 374.1	461.2 460.3 459.4	830.2 828.6 827.0		744.9 743.3 741.6	397.4 399.2 401
206 207 208	13181 ₂₇₁ 13452 ₂₇₅ 13727 ₂₇₉	$\begin{bmatrix} 17.921_{368} \\ 18.289_{374} \\ 18.663_{379} \end{bmatrix} \stackrel{25}{\underset{26}{2}}$					825.4 823.8 822.2	410.2 409.3	738.3	402.8 404.6 406.4
209 210 211	$\substack{14006\\14290\\288\\14578\\293}$	19.042 ₃₈₆ 19.428 ₃₉₂ 19.820 ₃₉₈ 27			381.6 383.5 385.4	455.0	820.6 819.1 817.4	407.5	733.6 731.9	411.8
212 213 214	14871 15168297 15470302	$\begin{bmatrix} 20.218_{404} \\ 20.622_{411} \\ 21.033_{419} \\ 29 \end{bmatrix}$			389.2 391.1	452.4 451.5	815.8 814.3 812.7	404.9 404.0	728.7 727.1	413.6 415.4 417.2
215 216 217	$\substack{15778\\16090312\\16406316\\322}$	21.452 ₄₂₄ 21.876 ₄₃₀ 31 22.306 ₄₃₇			394.8 396.7	450.6 449.6 448.7	811.0 809.3 807.7	402.1	722.1	420.8 422.6
218 219 220	16728 ₃₂₇ 17055 ₃₃₂ 17387 ³³²	22.743 23.188445 23.639451 33	$\begin{array}{c} 3.48 \\ 9.81633 \\ 6.24 \end{array}$	221.4 222.5 223.5	400.4	446.9	806.1 804.5 802.9			424.4 426.2 428

ati-	HE. Equiv	ALENT	9	ي	Specific	Volume.	Di	ENSITY.	1
ည်	OF E:	WORK.	d. the	of sation		1 %	<u>.</u>	Dec	ure,
Temperature, Degrees Centi- grade.	Calories.	B.T.U.	Entropy of Liquid.	Entropy of Vaporization.	Cubio Meters per Kilo.	Cubic Feet Per Pound.	Kilos per Cubic Meter.	Pounds Cubic Foot.	Temperature, Degrees Fahrenheit.
t	Apu	Apu	θ	<u>r</u> T	8		1/8	1 8	· ·
191 192 193	47.0 47.0 47.0	84.6	0.5358 0.5381 0.5403	1.0120	$\begin{array}{c} 0.1533_{32} \\ 0.1501_{31} \\ 0.1470_{30} \end{array}$	2.456 2.40551 2.35549	6.52 ₁₄ 6.66 ₁₄ 6.80 ₁₄	0.4072 0.415886 0.424690	375.8 377.6 379.4
194 195 196	47.0 47.1 47.1	84.7 84.8 84.9	0.5426 0.5448 0.5470	1.0000	$\substack{0.1440_{29}\\0.1411_{29}\\0.1382_{28}}$	2.306 ₄₇ 2.259 ₄₅ 2.214 ₄₅	$\begin{array}{c} 6.94 \\ 7.0914 \\ 7.2315 \end{array}$	$\substack{0.4336_{90}\\0.4426_{90}\\0.4516_{94}}$	381.2 383 384.8
197 198 199	47.2 47.2 47.3	84.9 85.0 85.1	0.5492 0.5514 0.5536	0.9882	$\substack{0.1354_{27}\\0.1327_{27}\\0.1300_{26}^{27}}$	2.169 2.12643 2.08342	7.38 ₁₅ 7.5316 7.69 ₁₅	$\substack{0.4610_{94}\\0.4704_{97}\\0.4801_{99}}$	386.6 388.4 390.2
200 201 202	47.3 47.3 47.3	85.1 85.2 85.2	0.5558 0.5580 0.5602	0.9765	$\begin{array}{c} 0.1274_{25} \\ 0.1249_{24}^{25} \\ 0.1225_{24}^{24} \end{array}$	$2.041_{40} \\ 2.001_{39} \\ 1.962_{39}^{39}$	$\begin{array}{c} 7.84\\8.0016\\8.1617\end{array}$	$\substack{0.4900\\0.4998\\98\\0.510\\10}$	392 393.8 395.6
203 204 205	47.4 47.4 47.4	85.3 85.3 85.4	0.5624 0.5646 0.5668	0.9650	$\begin{array}{c} 0.1201_{24} \\ 0.1177_{24} \\ 0.1153_{23} \end{array}$	1.923 ₃₈ 1.885 ₃₈ 1.847 ₃₇	$\substack{8.33\\8.50\\17\\8.67\\18}$	0.520 0.531 10 0.541 11	397.4 399.2 401
206 207 208	47.5 47.5 47.5	85.4 85.5 85.5	0.5690 0.5712 0.5733	0.9534	$\substack{0.1130_{22}\\0.1108_{22}\\0.1086_{21}}$	$\substack{1.810\\1.77436\\1.73935\\1.73934}$	$\begin{array}{c} 8.85\\ 9.03\\ 9.21\\ 18 \end{array}$	$\begin{array}{ccc} 0.552 & 12 \\ 0.564 & 11 \\ 0.575 & 12 \end{array}$	402.8 404.6 406.4
209 210 211	47.5 47.5 47.5	85.5 85.5 85.5	0.5755 0.5777 0.5799	0.9420	$\begin{array}{c} \textbf{0.1065}_{21} \\ \textbf{0.1044}_{20} \\ \textbf{0.1024}_{20} \end{array}$	$\substack{1.705\\1.67332\\1.64033\\1.64032}$	9.39 ₁₉ 9.58 ₁₉ 9.77 ₁₉	$\begin{array}{c} 0.587 \\ 0.598 \\ 12 \\ 0.610 \\ 12 \end{array}$	408.2 410 411.8
212 213 214	47.5 47.5 47.5	85.6 85.6 85.6	0.5820 0.5842 0.5863	0.9307	0.1004 ₂₀ 0.0984 ₁₉ 0.0965 ₁₈	1.608 ₃₁ 1.577 ₃₁ 1.546 ₃₀	$\begin{array}{c} 9.96_{20} \\ 10.16_{20} \\ 10.36_{20} \end{array}$	0.622 0.634 13 0.647	413.6 415.4 417.2
215 216 217	47.5 47.5 47.5	85.6 85.6 85.6	0.5885 0.5906 0.5927	0.9195	0.0947 ₁₉ 0.0928 ₁₈ 0.0910 ₁₇	$\substack{1.516\\1.486\\28\\1.458\\28}$	$\begin{array}{c} 10.56_{22} \\ 10.78_{21} \\ 10.99_{21} \end{array}$	0.660 0.673 0.686 13	419 420.8 422.6
218 219 220	47.5 47.5 47.5	85.6 85.6 85.6	0.5948 0.5969 0.5991	0.9084	$\begin{array}{c} 0.0893_{17} \\ 0.0876_{16} \\ 0.0860^{16} \end{array}$	1.430 ₂₇ 1.403 ₂₇ 1.376 ²⁷	$\begin{array}{c c} 11.20_{21} \\ 11.41_{21} \\ 11.62 \end{array}$	$\begin{array}{c} 0.699 \\ 0.713 \\ 0.727 \end{array}$	424.4 426.2 428

TABLE IV. SATURATED VAPOR OF ETHER.

Temperature, Degrees Centigrade.	Pressure, Millimeters of Mercury.	Heat of the Liquid.	Total Heat.	Heat of Vaporization.	Heat equivalent of Internal Work.	Heat equivalent of External Work.	Entropy of the Liquid.	Specific Volume.	Weight, in Kilos, of One Cubic Meter.	Temperature, Degrees Centi- grade.
t	p	q	H	r	ρ	Apu	0	. 8	γ	t
0	184.39	0.00	94.00	94.00	86.45	7.55	0.0000	1.278	0.728	0
10	006 02	5.32	00.44	00 10	05 97		0.01000	0 0440	1 105	10
10	286 .83		98.44	93.12	85 .37	7.75	0.01909			10
20	432.78	10.70	102.78	92.08	84.13	7.95	0.03772		1.742	20
30	634.80	16.14	107.00	90.86	82.72	8.14	0.05593	0.4013	2.492	30
40	907.04	21.63	111 .11	89.48	81.15	8.33	0.07374	0 2877	3.746	40
50	1264.8	27.19	115.11	87.92	79.41	8.51	0.09117		4.744	50
60	1725.0	32.80	119.00	86.20	77.53	8.67		0.1580	6.329	60
"	1120.0	02.00	110.00	00.20		0.0.	0.1000	0.1000	0.020	"
70	2304.9	38.48	122.78	84.30	75.49	8.81	0.1250	0.1203	8.313	70
80	3022.8	44.21	126,44	82.23	73.32	8.91		0.0932	10.73	80
90	3898.3	50.00	130.00	80.00	71.03	8.97	0.1576	0.0731	13.68	90
	5555.0		200.00	20.00	12.00	5.0.			00	
100	4953.3	55.86	133.44	77.58	68.62	8.96	0.1735	0.0577	17.33	100
110	6214.6	61.77	136.78	75.01	66.13	8.88	0.1891	0.0459	21.79	110
120	7719.2	67.74	140.00	72.26	63.57	8.69	0.2045	0.0364	27.47	120
1	·						1			

TABLE V. SATURATED VAPOR OF ALCOHOL.

Temperature, Degrees Centigrade.	Pressure, Millimeters of Mercury.	Heat of the Liquid.	Total Heat.	Heat of Vaporization.	Heat equivalent of Internal Work.	Heat equivalent of External Work.	Entropy of the Liquid.	Specific Volume.	Weight, in Kilos, of One Cubic Meter.	Temperature, Degrees Centi- grade.
t	p	q	H	r	ρ	Apu	θ		γ	t
						ļ				
0	12.70	0.00	236 .5	236.50	223 .38	13.12	0.0000	32 .21	0.03105	0
10	24.23	5 .59	244.4	238 .81	225 .29	13 52	0.01996	17 39	0.05750	10
20	44 .46	11.42	252.0	240.58	226 .56		0.04003		0.1016	20
30	78.52	17 .49	258 .0	240.51	226 .03		0.06029	5.753	0.1738	30
40	133 .69	23.71	262.0	238 .29	223 .44	14.85	0.08073	3.465	0.2886	40
50	219.90	30 .21	264.0	233.79	218.59		0.1014	2.143	0.4666	50
60	350.21	37 .37	265 .0	227 .63	212 .38	15 .25	0.1223	1.359	0.7358	60
70	541.15	44 .58	265.2	220 .62	205 .28	15.34	0.1435	0.8855	1.129	70
80	812.91	52.11	265.2		197.69		0.1650	0.5921		80
90	1189.3	59 .97	266.0	206.03	190.54	15.49	0.1868	0.4073	2.455	90
100	1697.6	68.18	267.3	199.12	183 .54	15.58	0.2090	0.2874	3.479	100
110	2367.6	76.74		192.86	177.15	15.71	0.2315	0.2083	4.801	110
120	3231 .7	85 .67	272.5	186.83	170 .97	15.86	0.2544	0.1544	6.477	120
130	4323.0	94 .98	276.0	181.02	164.99	16.03	0.2776	0.1170	8.547	130
140	5674.6	104.70	280.5	175.80	159.55	16.25	0.3013	0.0905	11.05	140
150	7318.4	114.82	285.3	170.48	154.03	16.45	0.3254	0.0714	14.01	150
						l	<u> </u>		l	

TABLE VI.

SATURATED VAPOR OF CHLOROFORM.

Temperature, Degrees Centi- grade.	Pressure, Millimeters of Mercury.	Heat of the Liquid.	Total Heat.	Heat of Vaporization.	Heat equivalent of Internal Work.	Heat equivalent of External Work.	Entropy of the Liquid.	Specific Volume.	Weight, in Kilos, of One Cubic Meter.	Temperature, Degrees Centigrade.
t	p	q	H	r	ρ	Apu	θ	8	γ	t
0	59 . 72	0.00	67 .00	67 .00	62 .45	4.55	0.00000	2.377	0 .4207	0
10	100.47	2.33	68.38	66.04	61.29	4.75	0.00836	1.475	0.6780	10
20	160.47	4.67	69.75	65.08	60.14	4.94	0.01646	0.9601	1.042	20
30	247 .51	7.02	71.12	64.10	59 .00	5.10	0.02432	0.6437	1.554	30
40	369 .26	9 .37	72.50	63.13	57 .87	5.26	0.03196	0.4449	2.248	40
50	535 .05	11.74	73.87	62.13	56.73	5.40	0.03940	0.3155	3.170	50
60	755 .44	14.12	75 .25	61.13	55.60	5 .53	0.04664	0.2291	4.356	60
70	1042.1	16.51	76.62	60.11	54.45	5.66	0.05369	0.1700	5.88	70
80	1407.6	18.91	78.00	59.09	53.31	5.78	0.06057	0.1286	7.78	80
90	1865 .2	21.32	79 .37	58 .05	52.16	5.89	0.06729	0.0991	10.09	90
100	2428.5	23.74	80.75	57.01	51.01	6.00	0 .07386	0.0777	12 .87	100
110	3111.0	26.17	82.12	55.95	49 .84	6.11	0.08027	0.0618	16.18	110
120	3925 .7	28 .61	83 .50	54 .89	48 .67	6.22	0 .08655	0.0500	20.00	120
130	4885 .1	31.06	84 .87	53.81	.47 .48	6.33	0.09270	0.0410	24 .39	130
140	6000.2	33.52	86.25	52.73	46.30	6.43	0.09872	0.0340	29.4	140
150	7280.6	35 .99	87.62	51.63	45.10	6.53	0.10462	0.0286	35.0	150
160	8734 .2	38 .47	89 .00	50.53	43 .90	6 .63	0.11041	0 .0243	41 .2	160

TABLE VII.

SATURATED VAPOR OF CARBON BISULPHIDE.

Temperature, Degrees Centi- grade.	Pressure, Millimeters of Mercury.	Heat of the Liquid.	Total Heat,	Heat of Vaporization.	Heat equivalent of Internal Work.	Heat equivalent of External Work.	Entropy of the Liquid.	Specific Volume.	Weight, in Kilos, of one Cubic Meter.	Temperature, Degrees Centi- grade.
t	p	q	H	7	P	Apu	θ	8	γ	t
<u> </u>										
0	127 .91	0.00	90.00	90.00	82.76	7.24	0.00000	1.766	0.5662	0
10	198.46	2.36	91.42	89.06	81.58	7.48	0.00847	1.177	0.8496	10
20	298.03	4.74	92.76	88.02	80.31	7.71	0.01670	0.8071	1.239	20
30	434.62	7.13	94.01	86.88	78.97	7.91	0.02472	0.5684	1.759	30
, ,	301.02	1.13	94.01	00.00	10.51	1.31	0.02412	0.0001	1.100	30
40	617.53	9.54	95.18	85.64	77.54	8.10	0.03252	0.4098	2.440	40
50	857.07	11.96	96.27	84.31	76.04	8.27	0.04013	0.3017	3.315	50
60	1164.5	14.41	97 .28	82 .87	74 .45	8.42	0.04756	0.2264	4.417	60
70	1552.1	16.86	98.20	81 .34	72.78	8.56	0.05482	0.1726	5.794	70
80	2032.5	19.34	99.04	79.70	71.03	8.67	0.06192	0.1338	7.473	80
90	2619.1	21 .83	99.80	77 .97	69.20	8.77	0.06886	0.1052	9.51	90
"	2019.1	21.00	99.00	11.91	08.20	0.11	0.00000	0.1002	9.01	
100	3325.2	24.34	100.48	76.14	67.29	8.85	0.07566	0.0837	11.95	100
110	4164.1	26.86	101.07	74.21	65.31	8.90	0.08233	0.0674	14.84	110
120	5148.8	29.40	101.58	72.18	63.24	8.94	0.08886	0.0549	18.21	120
100	8001 6		100 01	50.05			0.00505	0.0450	00.10	400
130	6291.6	31.96	102.01	70.05	61.09	8.96	0.09527	0.0452	22.12	130
140	7604.0	34.53	102.36	67.83	58.88	8.95	0.10157	0.0375		140
150	9095.9	37 .12	102.62	65 .50	56.58	8.92	0.10775	0.0314	31.8	150
						<u> </u>				1

Table VIII.

SATURATED VAPOR OF CARBON TETRACHLORIDE.

Temperature, Degrees Centi- grade.	Pressure, Millimeters of Mercury.	Heat of the Liquid.	H Total Heat.	Heat of Vaporization.	Heat equivalent of Internal Work.	Heat equivalent of External Work.	Entropy of the Liquid.	a Specific Volume.	Weight, in Kilos, of One Cubic Meter.	Temperature, Degrees Centigrade.
1 1	Ρ .	A	91+4		•			•	•	ľ
0	32.95	0.00	-	52 .00	48.54	3.46	0.00000	3 .272	0 .3056	0
10	55 .97	1.99	53.44	51.45	47.85	3.60	0.00714	2.005	0.4987	10
20	90.99	3.99		50.87	47.13	3.74	0.01409	1.283	0.7794	
30	142.27	6.02	56.23	50.21	46.33	3.88	0.02087	0.8510	1.175	30
40 50 60	214 .81 314 .38 447 .43	8 .06 10 .12 12 .20	58.88	49 .52 48 .76 47 .96	45 .51 44 .62 43 .69	4.01 4.14 4.25	0.02749 0.03396 0.04028	0.5831 0.4109 0.2969	1.715 2.434 3.368	40 50 60
70	621.15	14.30	61.40	47.10	42.75	4.35	0.04648	0.2192	4.562	70
80	843.29	16.42		46.18	41.74	4.44	0.04255	0.1650	6.061	80 .
90	1122.3	18.55	63.77	45.22	40.50	4.72	0.05849	0.1263	7.92	90
100 110 120	1467 .1 1887 .4 2393 .7	20 .70 22 .87 25 .06 27 .27	64 .90 66 .01 67 .07	44 .20 43 .14 42 .01 40 .83	39 .62 38 .52 37 .36	4.58 4.62 4.65	0.06433 0.07006 0.07569 0.08122	0.0980 0.0770 0.0611	10.20 12.99 16.37	100 110 120
140	3709.0	29.49	69.10	39.61	34.95	4.63	0.08666	0.0395	25.3	140
150	4543.1	31.73	70.07	38.34	33.75	4.59	0.09201	0.0321	31.2	150
160	5513.1	34.00	71.00	37 .00	32.47	4.53	0.09729	0.0262	38.2	160

TABLE IX. SATURATED VAPOR OF ACETON.

Temperature, Degrees Centi- grade.	Pressure, Millimeters of Mercury.	Heat of the Liquid.	Total Heat.	Heat of Vaporization.	Heat equivalent of Internal Work.	Heat equivalent of External Work.	Entropy of the Liquid.	Specific Volume.	Weight, in Kilos, of One Cubic Meter.	Temperature, Degrees Centi- grade.
t	p	q	H	r	ρ	Apu	θ	8	γ	ŧ
0	63 .33	0.00	140.50	140.50	131 .82	8.68	0.00000	4 .275	0.2339	0
10	110.32	5.10	144.11	139 .01	129 .51	9.50	0.01832	2.686	0.3723	10
20	180.08	10.29	147 .62	137 .33	127.16	10.17	0.03627	1.758	0.5688	20
30	280.05	15.55	151 .03	135 .48	124.83	10.65	0.05389	1.187	0.8425	30
40	419.35	20 .89	154 .33	133 .44	121.39	11.05	0.07119	0 .8227	1.215	40
50	608.81	26.31	157.53	131.22	119.86	11.36	0.08820	0.5830	1.715	50
60	860.96	31 .81	160.63	128.82	117 .22	11.60	0.1049	0.4215	2.372	60
70	1189.9	37 .39	163.62	126 .23	114 .43	11 .80	0.1214	0.3106	3.220	70
80	1611.1	43.05	166.51	123.46	111.49	11.97	0.1376	0.2328	4.296	80
90	2140.8	48.79	169 .30	120 .51	108 .41	12.10	0.1536	0.1773	5 .640	90
100	2796.2	54.61	171 .98	117 .37	105 .17	12.20	0.1694	0.1372	7 .289	100
110	3594.3	60.50	174.56	114.06	101.78	12:28	0.1850	0.1076	9.294	110
120	4552.0	66.48	177 .04	110.56	98.23		0.2004	0.0856	11.68	120
130	5684.9	72.54	179 .42	106 .88	94.53	12.35	0.2156	0.0689	14.51	130
140	7007.6	78 .67	181 .69	103.02	90.67	12.35	0.2306	0.0561	17.83	140

Table X.

SATURATED VAPOR OF AMMONIA.

ENGLISH · UNITS.

	1	· ·							l 50 11	
اط	انما			ģ	Heat equivalent of Internal Work.	Heat equivalent of External Work.	ø.	Specific Volume.	Density.	4
9 E	5 5			tic	ale al	न्हु न	# #	Ξ	_ •_ 0	a) 28
	18	8 . I	at	23	₽ E	[≛ 5	ಿ ರ	۸o	4 2 5 E	1 g
E 2 5	e d a	##	He	- Q	¥ 25 ₹	K X &	orte 1	່ຍ		至 多 苦
mperature, Degrees Fah- renheit.	essure, Pounds per Square Inch.	eat of the Liquid.	7	sat of Vaporization.	est equivale of Internal Work.	sat equivale of External Work.	atropy o Liquid.	뜆	eight, in pounds, of One Cubic Foot.	mperature, Degrees Fah- renheit.
Temperature, Degrees Fa renheit.	Pressure, Pound Square	Heat of the Liquid.	Total Heat.	Heat of Vapo	36.98	8 2 2	Entropy of the Liquid.	₹.	Weight, pound One C Foot.	Temperature, Degrees Fa renheit.
۲	Α.	P	Ŧ	#	щ	μ	Ħ	202	E	H
l ı	p	q	H	r	٠ ۾	Apu	θ	8	γ	t
'	, P	*		•	•	11.00			•	•
-40	9 .93	-79	519	598	550	48	-0 .1737	26.1	0.0383	-40
-35	11.53	-74	520	594	546	48	-0.1607	22.6	0.0363	-35
-30 -30	13.36	-68	522	590	541	49	-0.1482	19.7	0.0507	-30 -30
-50	10.50	-00	022	000	011	1 20	0.1402	10.1	0.0001	-30
-25	15.40	-63	523	586	537	49	-0.1354	17.3	0.0580	-25
-20	17.70	-57	525	582	532	50	-0.1229	15.2	0.0860	-20
-15	20.25	-52	526	578	528	50	-0.1102	13.3	0.0750	-15
-				3.3					3.0.00	
-10	23.10	-46	528	574	524	50	-0.0982	11.8	0.0848	-10
-5	26.25	-41	529	570	519	51	-0.0859	10.5	0.0956	-5
0	29.74	-35	531	566	515	51	-0.0738	9.32	0.108	Ö
5	33.58	-30	532	562	511	51	-0.0619	8.31	0.120	5
10	37 .80	-24	534	558	506	52	-0.0501	7.44	0.134	10
15	42.43	-19	535	554	502	52	-0.0386	6.68	0.150	15
20	47 .49	-13	537	550	497	53	-0.0271	6.02	0.166	20
25	53 .01	-8	538	546	493	53	-0.0157	5.43	0.184	25
30	59.01	-2	540	542	489	53	-0.0044	4 .92	0.203	30
	05 50	,	541	F20	484	54	0.0007	4 .46	0.005	
35 40	65.53	3 9	543	538 534	484 480	54 54	0.0067 0.0177	4.06	0.225	35
45	72.59	14	544	530	475	55	0.0177	3.70	0.247 0.270	40
40	80.21	14	344	990	419	99	0.0201	3.10	0.270	45
50	88.44	20	546	526	471	55	0.0395	3.38	0.296	50
55	97.30	25	547	522	467	55	0.0502	3.09	0.230	55
60	106.82	31	549	518	462	56	0.0608	2.84	0.352	60
"	-00.02	\ \frac{\fir}{\fin}}}}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}}}}}}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}}}}}}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\f{\fra		5.5		""	0.000,0		J.002	••
65	117.04	36	550	514	458	56	0.0713	2.61	0.383	65
70	127 .98	42	552	510	454	56	0.0817	2.40	0.416	70
75	139 .67	47	553	506	449	57	0.0921	2.22	0.451	75
										_
80	152.15	53	555	502	445	57	0.1023	2.05	0.488	80
85	165 .47	58	556	498	441	57	0.1124	1.90	0.527	85
90	179.64	64	558	494	436	58	0.1224	1.76	0.568	90
						l '				
95	194.70	69	559	490	432	58	0.1324	1.63	0.612	95
100	210.70	75	561	486	428	58	0.1423	1.52	0.657	100

TABLE XI.

SATURATED VAPOR OF SULPHUR DIOXIDE.

ENGLISH UNITS.

Temperature, Degrees Fah- renheit.	Pressure, Pounds per Square Inch.	Heat of the Liquid.	Total Heat.	Heat of Vaporization.	Heat equivalent of Internal Work.	Heat equivalent of External Work.	Entropy of the Liquid.	Specific Volume.	Weight, in pounds, of One Cubic Foot.	Temperature, Degrees Fah- renheit.
t	p	q	H	r	P	Apu	•	8	٧	t
-40	3.14	-29	166	195	182	13	-0.0632	23 .0	0 .0434	- 40
-35	3.70	-27	167	194	180	14	-0.0584	19 .7	0 .0507	- 35
-30	4.34	-25	168	193	179	14	-0.0539	17 .0	0 .0590	- 30
-25	5.07	-23	168	191	177	14	-0.0492	14.7	0.0682	-25
-20	5.90	-21	169	190	176	14	-0.0447	12.7	0.0785	-20
-15	6.83	-19	170	189	175	14	-0.0401	11.1	0.0901	-15
-10	7 .88	-17	170	187	173	14	$ \begin{array}{r} -0.0357 \\ -0.0312 \\ -0.0268 \end{array} $	9 .73	0.103	-10
-5	9 .05	-15	171	186	172	14		8 .56	0.117	-5
0	10 .35	-13	172	185	170	15		7 .54	0.133	0
5	11 .81	-11	172	183	168	15	-0.0225	6.67	0.450	5
10	13 .41	-9	173	182	167	15	-0.0182	5.93	0.169	10
15	15 .19	-7	174	181	166	15	-0.0140	5.29	0.189	15
20	17 .15	-5	174	179	164	15	-0.0098	4.72	0 .212	20
25	19 .30	-3	175	178	163	15	-0.0057	4.23	0 .236	25
30	21 .66	-1	176	177	162	15	-0.0016	3.81	0 .263	30
35	24 .24	1	176	175	160	15	0.0024	3.43	0.291	35
40	27 .06	3	177	174	158	16	0.0064	3.10	0.322	40
45	30 .12	5	177	172	156	16	0.0104	2.81	0.356	45
50	33 .45	7	178	171	155	16	0.0144	2.58	0.390	50
55	37 .07	9	179	170	154	16	0.0182	2.32	0.430	55
60	40 .98	11	179	168	152	16	0.0221	2.11	0.473	60
65	45 .20	13	180	167	151	16	0.0259	1.94	0.516	65
70	49 .75	15	181	166	150	16	0.0297	1.78	0.563	70
75	54 .64	17	181	164	148	16	0.0334	1.63	0.614	75
80	59 .90	19	182	163	146	17	0.0372	1 .50	0.668	80
85	65 .54	21	183	162	145	17	0.0409	1 .38	0.725	85
90	71 .57	23	183	160	143	17	0.0445	1 .27	0.786	90
95	78 .02	25	184	159	142	17	0.0482	1.18	0.849	95
100	84 .90	27	185	158	141	17	0.0518	1.09	0.917	100

TABLE XII.

SPECIFIC GRAVITY AND SPECIFIC VOLUME OF LIQUIDS.

Name of Liquid.	Specific Gravity, compared with Water at 4° C.	Specific Volume. Cubic Meters per Kilo.
Ether, $C_4H_{10}O$	1.2922 [Thorpe, 1880]	0.000774 0.000613 0.00123 0.0006981

TABLE XIII.

VOLUME OF WATER.

Vol. at 4° C. = 1.

[Rossetti, 1871] and [Hirn, 1867].

Temper- ature.	Volume.	Temper- ature.	Volume.	Temper- ature.	Volume.	Temper- ature.	Volume.
10	1.000253	60	1 .01691	110	1 .0512	160	1 .1018
20	1.001744	70	1 .02256	120	1 .0599	170	1 .1139
30	1.00425	80	1 .02887	130	1 .0694	180	1 .1268
40	1.00770	90	1 .03567	140	1 .0795	190	1 .1403
50	1.01195	100	1 .04312	150	1 .0903	200	1 .1544

TABLE XIV.

CONVERSION TABLE.

INCHES OF MERCURY AND POUNDS PER SQUARE INCH.

		1	2	3	4	5	6	7	8	9
0	0.00	0.05	0.10	0. 15	0.20	0. 25	0. 29	0.34	0.39	0.44
1	0.49	0.54	0.59	0. 64	0.69	0. 74	0. 79	0.84	0.88	0.93
2	0.98	1.03	1.08	1. 13	1.18	1. 23	1. 28	1.33	1.38	1.42
3	1.47	1.52	1.57	1.62	1.67	1.72	1.77	1.82	1.87	1.91
4	1.96	2.01	2.06	2.11	2.16	2.21	2.26	2.31	2.36	2.41
5	2.46	2.51	2.55	2.60	2.65	2.70	2.75	2.80	2.85	2.90
6	2.95	3.00	3.05	3.09	3.14	3.19	3. 24	3.29	3.34	3.39
7	3.44	3.49	3.54	3.59	3.63	3.68	3. 73	3.78	3.83	3.88
8	3.93	3.98	4.03	4.08	4.13	4.18	4. 22	4.27	4.32	4.37
9	4.42	4.47	4.52	4.57	4.62	4.67	4.72	4.76	4.81	4.86
10	4.91	4.96	5.01	5.06	5.11	5.16	5.21	5.26	5.30	5.35
11	5.40	5.45	5.50	5.55	5.60	5.65	5.70	5.75	5.80	5.85
12	5:89	5.94	5.99	6.04	6.09	6.14	6.19	6.24	6.29	6.34
13	6.39	6.43	6.48	6.53	6.58	6.63	6.68	6.73	6.78	-6.83
14	6.88	6.93	6.97	7.02	7.07	7.12	7.17	7.22	7.27	7.32
15	7.37	7.42	7.47	7.52	7.56	7.61	7.66	7.71	7.76	7.81
16	7.86	7.91	7.96	8.01	8.06	8.10	8.15	8.20	8.25	8.30
17	8.35	8.40	8.45	8.50	8.55	8.60	8.64	8.69	8.74	8.79
18	8.84	8.89	8.94	8.99	9.04	9.09	9.14	9. 19	9. 23	9.28
19	9.33	9.38	9.43	9.48	9.53	9.58	9.63	9. 68	9. 73	9.77
20	9.82	9.87	9.92	9.97	10.02	10.07	10.12	10. 17	10. 22	10.27
21	10.32	10.37	10.41	10.46	10.51	10.56	10.61	10.66	10.71	10.76
22	10.81	10.86	10.90	10.95	11.00	11.05	11.10	11.15	11.20	11.25
23	11.30	11.35	11.40	11.44	11.49	11.54	11.59	11.64	11.69	11.74
24	11.79	11.84	11.89	11.94	11.99	12.03	12.08	12.13	12.18	12.23
25	12.28	12.33	12.38	12.43	12.48	12.53	12.57	12.62	12.67	12.72
26	12.77	12.82	12.87	12.92	12.97	13.02	13.07	13.11	13.16	13.21
27	13.26	13.31	13.36	13.41	13.46	13.51	13.56	13.61	13.66	13.70
28	13.75	13.80	13.85	13.90	13.95	14.00	14.05	14.10	14.15	14.20
29	14.24	14.29	14.34	14.39	14.44	14.49	14.54	14.59	14.64	14.69
30	14.74	14.78	14.83	14.88	14.93	14.98	15.03	15.08	15.13	15. 18

Table XV.

CORRECTIVE FACTORS FOR SUPERHEATED STEAM.

Values of the factor $\frac{150,300,000}{T^3}$ — 0.0833.

Temp	erature.	Value.	Tem	perature.	Value. of	Tem	perature.	Value of
Fahr.	Abs.	Factor.	Fahr.	Abs.	Factor.	Fahr.	Abs.	Factor.
200	659.5	0.441	335	794.5	0.216	470	929.5	0.104
205	664.5	0.429	340	799.5	0.211	475	934.5	0.101
210	669.5	0.417	345	804.5	0.205	480	939.5	0.098
215	674.5	0.405	350	809.5	0.200	485	944.5	0.095
220	679.5	0.395	355	814.5	0.195	490	949.5	0.092
225	684.5	0.385	360	819.5	0.190	495	954.5	0.090
230	689.5	0.375	365	824.5	0.185	500	959.5	0.087
235	694.5	0.365	370	829.5	0.180	505	964.5	0.084
240	699 .5 •	0.356	375	834.5	0.175	510	969 .5	0.082
245	704.5	0.347	380	839.5	0.171	515	974.5	0.079
250	709.5	0.338	385	844.5	0.166	520	979.5	0.077
255	714.5	0.329	390	849 .5	0.162	525	984.5	0.074
260	719.5	0.320	. 395	854.5	0.158	530	989.5	0.072
265	724.5	0.312	400	859.5	0.153	535	994.5	0.070
270	72 9 .5	0.304	405	864.5	0.149	540	999 .5	0.067
275	734.5	0.296	410	869.5	0.145	545	1004.5	0.065
280	739.5	0.288	415	874.5	0.141	550	1009.5	0.063
285	744 .5	0.281	420	879 .5	0.138	555	1014.5	0.061
290	749.5	0.274	425	884.5	0.134	560	1019.5	0.059
295	754.5	0.267	430	889.5	0.131	565	1024.5	0.057
300	759 .5	0.260	435	894.5	0.127	570	1029 .5	0.055
305	764.5	0 .253	440	899.5	0.123	575	1034.5	0.053
310	769.5	0.247	445	904.5	0.120	580	1039 .5	0.051
315	774.5	0.240	450	909.5	0.117	585	1044.5	0.049
320	779.5	0.234	455	914.5	0.113	590	1049.5	0.047
325	784 .5	0.228	460	919.5	0.110	595	1054.5	0.045
330	789 .5	0.222	465	924.5	0.107			

TEMPERATURE-ENTROPY TABLE

This table gives the properties of moist and of superheated steam at each degree of temperature Fahrenheit, and for each hundredth of a unit of entropy.

At the left hand of each page are given the temperatures and the corresponding pressures of saturated steam; the lines across the tables are, therefore, constant pressure lines, and for moist steam are also constant temperature lines.

The table is divided by a broken line which corresponds roughly to the saturation line; properties to the left of that line are for moist steam and to the right are for superheated steam.

The triple-columns are headed with the entropy, and are constant entropy lines; they can be used for solving problems concerning adiabatic operations in a closed cylinder, and similar problems.

At any point in the table, determined by the entropy and the pressure (or the corresponding temperature of saturated steam), there are given three properties:—

- (1) The quality, which for moist steam is the proportion of a pound that is steam, and for superheated steam is the number of degrees of superheating.
- (2) The heat contents, or the number of thermal units required to change a pound of water at freezing into steam at the given pressure and with the given quality.
 - (3) The specific volume in cubic feet per pound. For examples, solved by aid of the table, see page 32.

e,	e e		1.52		1.53			1.54			1.55	
Temperature, Degrees Fahr.	Pressure, Pounds per Square Inch.	Quality.	Heat Contents.	Volume. Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.
420 419 418	308.5 305.1 301.8	10.7 9.7 8.6	1212.5 1211.5 1210.5 1.8	35 23.1 48 22.0 62 21.0		1.569 1.584 1.599	36.5 35.4 34.3	1230.4 1229.4 1228.4	1.622	50.7 49.6 48.4	1239.6 1238.5 1237.5	1.651 1.665 1.679
417 416 415	298.5 295.2 292.0	7.6 6.6 5.5	1209.5 1208.6 1207.6	76 19.9 89 18.8 03 17.7	1217.5	1.612 1.626 1.640	33.1 32.0 30.8	1227.4 1226.4 1225.4	1.667	47.2 45.9 44.7	1236.5 1235.5 1234.5	1.694 1.709 1.723
414 413 412	288.9 285.7 282.5	4.5 3.4 2.4	1206.6 1205.6 1204.7	17 16.6 32 15.4 45 14.3	1214.4	1.670	29.7 28.5 27.3	1224.4 1223.4 1222.4	1.711	43.5 42.3 41.2	1233.5 1232.5 1231.5	1.738 1.753 1.768
411 410 409	279.4 276.3 273.3	1.3 0.3 9994	1203.8 1202.9 1.6 1201.9	74 12.2	1211.5	1.715	26.2 25.1 23.9	1221.5 1220.5 1219.5	1.754	40.0 38.8 37.6	1230.5 1229.5 1228.4	1.783 1.799 1.814
403 407 406	270.3 267.3 264.3	9984 9974 9966	1201.0 1200.0 1199.2	06 10.0 23 9.0 41 7.9	1208.7	1.745 1.760 1.776	22.7 21.6 20.5	1218.5 1217.5 1216.5		36.4 35.1 33.9	1227.4 1226.4 1225.4	1.830 1.845 1.861
405 404 403	261.3 258.4 255.5	9956 9947 9937	1198.2 1197.3 1196.3	59 6.8 77 5.7 95 4.6	1205.7	1.791 1.808 1.823	19.3 18.2 17.1	1215.5 1214.6 1213.7	1.850	32.7 31.5 30.3	1224.4 1223.4 1222.4	1.877 1.894 1.910
402 401 400	252.6 249.7 246.9	9928 9918 9907	1195.3 1.8 1194.3 1.8 1193.4 1.8	13 3.5 32 2.4 51 1.3	1202.9	1.856	16.0 14.9 13.8	1212.7 1211.8 1210.8	1.8991	29.1 27.9 26.7	1221.4 1220.4 1219.4	1.927 1.944 1.961
399 398 397	244.1 241.4 238.6	9899 9889 9881	1192.4 1191.5 1190.6	89 9993	1200.0	1.909	12.7 11.5 10.4	1209.8 1208.8 1207.9	1.950	25.5 24.3 23.1	1218.4 1217.4 1216.4	1.978 1.995 2.013
396 395 394	235.9 233.2 230.5	9871 9862 9852	1189.6 1188.6 1187.7	48 9965	6 1197.2	1.948 1.968 1.988	9.3 8.1 7.0	1206.9 1206.0 1205.0	2.002	21.9 20.7 19.5	1215.4 1214.4 1213.4	2.030 2.049 2.068
393 392 391	227.9 225.2 222.6	9843 9835 9825	1186.7 1185.8 1184.8 2.0	87 9945 07 9937 28 9927	1194.3	2.008 2.028 2.049	5.9 4.8 3.7	1204.0 1203.0 1202.0	2.058	18.3 17.1 15.9	1212.4 1211.4 1210.4	2.087 2.105 2.124
390 389 388	220.1 217.5 215.0	9816 9806 9798	1183.9 1182.9 2.0 1181.9	71 9907	' 1191.4	2.092	2.6 1.5 0.3	1201.0 1200.0 1198.9	2.115	14.7 13.5 12.3	1209.3 1208.3 1207.3	2.144 2.163 2.183
387 386 385	212.5 210.0 207.5	9788 9779 9769	1180.9 2.1 1179.9 2.1 1179.0 2.1	14 9889 36 9879 58 9870		2.136 2.158 2.180	9990 9980 9970	1197.8 1196.8 1195.8	2.158 2.180 2.202	11.1 9.9 8.7	1206.3 1205.3 1204.3	2.203 2.223 2.244
384 383 382	205.1 202.6 200.3	9761 9752 9743	1178.0 2.1 1177.1 2.2 1176.1 2.2	81 9861 9852 26 9843	1185.5	2.203 2.226 2.249	9962 9952 9943	1194.8 1193.9 1192.9	2.225 2.248 2.272	7.5 6.3 5.1	1203.3 1202.3 1201.3	2.265 2.286 2.308
381 380 379	197.9 195.5 193.2	9734 9724 9716	1175.1 2.2 1174.2 2.2 1173.2 2.2	74 0823	l 11182 6	2.298	9933 9923 9914	1191.9 1190.9 1190.0	2.321	3.9 2.7 1.5	1200.3 1199.3 1198.3	2.329 2.351 2.373
378 377 376	190.9 188.6 186.3	9705 9696 9687	1172.2 2.3 1171.2 2.3 1170.2 2.3		1179.6	2.372	9903 9893 9884	1189.0 1188.0 1187.0	2.396	9992	1197.3 1196.3 1195.3	2.394 2.420 2.446
375 374 373	184.1 181.9 179.7	9679 9671 9661	1169.2 2.3 1168.3 2.4 1167.3 2.4	26 9769	1176.5	2.449	9876 9867 9857	1185.9 1184.9 1183.9	2.474	9974 9965 9955	1194.2 1193.2 1192.2	2.472 2.498 2.524
											<u></u>	

ahr.	e e		1.56		1.57			1.58		1.59	
Temperatures, Degrees Fahr.	Pressure, Pounds per Square Inch.	Quality.	Heat Contents.	Volume. Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Contents tents. Specific	Quality.	Heat Con- tents.	Specific Volume.
420 419 418	308.5 305.1 301.8	66.1 64.9 63.6	1248.8 1.6 1247.7 1.7 1246.7 1.7	92 82.7 05 81.4 20 80.0	1258.3 1257.2 1256.2	1.753	100.5 99.0 97.5	1267.8 1266.7 1265.6 1.814	118.9 117.4 115.9	1277.7 1276.6 1275.6	1.830 1.845 1.861
417 416 415	298.5 295.2 292.0	62.3 61.0 59.7	1245.6 1.7 1244.6 1.7 1243.5 1.7	50 77.3	1255.1 1254.1 1253.1	1.799	96.0 94.6 93.1	1264.5 1263.4 1262.3 1.859	112.9	1274.5 1273.5 1272.4	1.877 1.893 1.909
414 413 412	288.9 285.7 282.5	58.4 57.1 55.9	1242.5 1.7 1241.5 1.7 1240.5 1.8	81 74.7 96 73.3 12 72.0	1252.0 1251.0 1250.0	1.844	91.7 90.3 88.9	1261.3 1260.3 1259.3 1.906	108.3	1271.3 1270.2 1269.1	1.926 1.942 1.958
411 410 409	279.4 276.3 273.3	54.6 53.3 52.1	1239.5 1238.4 1237.4 1.8	70.7 43 69.4 58 68.0	1248.9 1247.9 1246.9	1.891	87.4 86.0 84.6	1258.2 1257.2 1256.1 1.954	105.3 103.9 102.4	1268.1 1267.1 1266.0	1.975 1.992 2.009
408 407 406	270.3 267.3 264.3	50.8 49.5 48.3	1236.4 1235.4 1234.4 1.9	91 65.3	1245.8 1244.8 1243.8	1.923 1.940 1.956	83.2 81.8 80.3	1255.1 1254.1 1253.1 2.003	99.4	1264.9 1263.8 1262.7	2.025 2.043 2.060
405 404 403	261.3 258.4 255.5	46.9 45.6 44.4	1233.4 1232.3 1.9 1231.3	24 62.6 40 61.3 57 59.9	1242.6 1241.5 1240.4	1.989	78.9 77.5 76.0	1252.1 2.021 1250.9 2.039 1249.7 2.056	96.4 94.9 93.4	1261.6 1260.5 1259.4	2.078 2.095 2.113
402 401 400	252.6 249.7 246.9	43.1 41.8 40.6	1230.3 1229.3 1228.3 2.0	74 58.5 91 57.1 09 55.8	1239.4 1238.3 1237.3	2.023 2.040 2.058	74.5 73.0 71.6	1248.6 2.074 1247.5 2.093 1246.4 2.110	91.9 90.4 88.9	1258.4 1257.3 1256.2	2.131 2.150 2.168
399 398 397	244.1 241.4 238.6	39.3 38.0 36.7	1227.2 2.0 1226.2 2.0 1225.1 2.0	27 54.5 45 53.1 84 51.8	1236.3 1235.2 1234.2	2.077 2.095 2.113	70.3 68.9 67.5	1245.3 2.129 1244.3 2.148 1243.3 2.167	87.5 86.0 84.5	1255.2 1254.1 1253.0	2.187 2.205 2.224
396 395 394	235.9 233.2 230.5	35.5 34.3 33.0	1224.12.0 1223.12.1 1222.12.1	82 50.4 01 49.1 20 47.8	1233 · 2 1232 · 1 1231 · 0	2.150	66.0 64.7 63.3	1242.3 2.186 1241.2 2.205 1240.2 2.224	83.0 81.5 80.1	1251.9 1250.8 1249.7	2.243 2.263 2.282
393 392 391	227.9 225.2 222.6	$31.8 \\ 30.6 \\ 29.3$	1221.1 1220.1 1219.0 2.1	38 46.4 57 45.0 78 43.7	1230.0 1229.0 1227.9	2.208	61.9 60.5 59.2	1239.1 2.244 1238.0 2.263 1237.0 2.283	77.1	1248.6 1247.5 1246.4	2.303 2.323 2.343
390 389 388	220.1 217.5 215.0	28.0 26.7 25.5	1218.0 2.1 1217.0 2.2 1216.0 2.2	98 42.4 17 41.1 36 39.8	1226.9 1225.9 1224.8	2.247 2.268 2.289	57.9 56.5 55.0	1235.9 2.304 1234.8 2.325 1233.8 2.346	74.2 72.7 71.2	1245.3 1244.2 1243.1	2.363 2.384 2.405
387 386 385	212.5 210.0 207.5	24.3 23.0 21.8	1215.0 1213.9 2.2 1212.8 2.2	57 38.4 78 37.0 99 35.7	1223.7 1222.7 1221.6	2.331	53.6 52.3 50.9	1232.7 1231.6 1230.6 2.389	68.3	1242.0 1240.9 1239.8	2.427 2.449 2.470
384 383 382	205.1 202.6 200.3	20.5 19.3 18.0	1211.8 1210.8 1209.8 2.3	20 34.4 41 33.0 82 31.7	1220.5 1219.5 1218.4	2.395	49.6 48.1 46.7	1229.6 1228.5 1227.4 2.476	63.8	1238.7 1237.6 1236.5	2.493 2.516 2.539
381 380 379	197.9 195.5 193.2	16.8 15.6 14.3	1208.7 1207.7 2.4 1206.7 2.4	30.4 29.1 29.27.8	1217.4 1216.3 1215.3	2.440 2.463 2.486	45.4 43.9 42.6	1226.4 1225.3 1224.2 2.546	50 A	1235.4 1234.3 1233.2	2.561 2.585 2.609
378 377 376	190.9 188.6 186.3	13.0 11.8 10.5	1205.6 1204.6 1203.6 2.4	52 26.4 74 25.1 97 23.8	1214.2 1213.1 1212.1	2.509 2.533 2.557	41.3 39.9 38.5	1223.2 2.570 1222.1 2.594 1221.0 2.619	56.4 55.0 53.5	1232.1 1230.9 1229.7	
375 374 373	184.1 181.9 179.7		1202.6 1201.6 1200.6 2.5	44 21.1	1211.1 1210.1 1209.0	2.605	37.1 35.7 34.3	1219.9 1218.8 1217.6 2.694	50.6	1228.6 1227.5 1226.4	2.732

ahr.	Pounda tare		1.52		1.53		1.54	1.55
Temperature, Degrees Fahr	Pressure, Pour per Square Inch.	Quality.	Heat Contents. Specific Volume.	Quality.	Heat Contents. Specific	Quality.	Heat Contents tents. Specific	Quality. Heat Contents. Specific Volume.
372	177.5	9653	1166.3 2.478	9751	1174.62.50	2 9848	1182.9 2.527	9946 1191.2 2.552
371	175.3	9644	1165.3 2.504	9741	1173.62.53	9 9838	1181.9 2.554	9936 1190.2 2.579
370	173.2	9635	1164.3 2.53	9732	1172.62.53	6 9830	1180.9 2.581	9927 1189.1 2.607
369	171.1	9626	1163.3 2.559	9723	1171,6 2.58	9820	1179.9 2.609	9917 1188.1 2.635
368	169.0	9617	1162.3 2.587	9714	1170.6 2.6	9811	1178.9 2.638	9908 1187.1 2.664
367	166.9	9608	1161.3 2.618	9705	1169.5 2.6	9801	1177.8 2.667	9898 1186.0 2.693
366	164.8	9600	1169.3 2.645	9696	1168.6 2.6	9792	1176.8 2.697	9889 1185.0 2.723
365	162.8	9590	1159.3 2.674	9686	1167.6 2.7	9783	1175.8 2.726	9879 1184.0 2.753
364	160.8	9582	1158.3 2.704	9678	1166.5 2.7	9774	1174.8 2.757	9870 1183.0 2.784
363	158.8	9572	1157.3 2.735	9660	1165.5 2.76	2 9764	1173.7 2.789	9860 1182.0 2.816
362	156.8	9564	1156.3 2.765		1164.5 2.79	3 9755	1172.7 2.819	9851 1181.0 2.847
361	154.8	9556	1155.3 2.796		1163.5 2.83	4 9746	1171.7 2.851	9841 1179.9 2.879
360 359 358	152.9 151.0 149.1	9546 9538 9529	1154.3 2.826 1153.3 2.859 1152.3 2.891	9641 9633 9624	1162.5 1161.5 2.88 1160.5 2.98	5 9736 7 9728 0 9719	1170.7 1169.7 2.914 1168.6 2.948	9832 1178.9 2.910 9823 1177.9 2.943 9813 1176.8 2.976
357 356 355	147.2 145.3 143.5	9520 9512 9503	1151.3 1150.3 1149.3 2.992	9614 9606 9597	1159.5 2.98 1158.4 2.98 1157.4 3.08	9709 9700 1 9692	1167.6 2.982 1166.6 3.016 1165.6 3.050	9803 1175.8 3.011 9795 1174.7 3.045 9786 1173.7 3.080
354	141.6	9494	1148.3 3.025	9588	1156.43.08	9682	1164.6 3.085	9776 1172.7 3.114
353	139.8	9486	1147.3 3.055	9579	1155.43.08	9673	1163.5 3.120	9767 1171.7 3.149
352	138.0	9477	1146.2 3.093	9571	1154.33.13	9664	1162.5 3.154	9758 1170.6 3.184
351 350 349	136.3 134.5 132.8	9468 9459 9451	1145.2 3.123 1144.2 3.163 1143.2 3.198	9561 9552 9544	1153.3 3.14 1152.3 3.14 1151.3 3.2	8 9654 9645 9637	1161.4 1160.4 3.224 1159.3 3.261	9748 1169.5 3.219 9739 1168.5 3.254 9730 1167.4 3.291
348	131.1	9443	1142.2 3.235	9535	1150.3 3.20	9628	1158.3 3.299	9721 1166.4 3.329
347	129.4	9434	1141.2 3.275	9527	1149.3 3.30	9619	1157.3 3.336	9712 1165.4 3.367
346	127.7	9426	1140.2 3.310	9518	1148.2 3.30	9611	1156.2 3.374	9703 1164.3 3.406
345 344 343	126.0 124.4 122.7	9417 9408 9400	1139.1 1138.1 1137.1 3.387 1137.1	9509 9500 9492	1147.2 3.38 1146.2 3.49 1145.1 3.40	9601 9592 1 9583	1155.2 3.413 1154.2 3.453 1153.1 3.494	9693 1163.2 3.445 9684 1162.2 3.486 9675 1161.1 3.527
342	121.1	9391	1136.1 3.467	9483	1144.1 3.50	9574	1152.1 3.535	9666 1160.1 3.569
341	119.5	9383	1135.0 3.507	9474	1143.0 3.54	9566	1151.0 3.576	9657 1159.0 3.610
340	117.9	9375	1134.0 3.548	9466	1142.0 3.58	9557	1150.0 3.617	9648 1158.0 3.652
339	116.3	9366	1133.0 3.591	9457	1140.93.62	6 9548	1148.9 3.661	9639 1156.9 3.696
338	114.8	9357	1131.9 3.634	9448	1139.93.66	9 9538	1147.9 3.705	9629 1155.8 3.740
337	113.3	9349	1130.9 3.679	9439	1138.83.7	4 9530	1146.8 3.750	9620 1154.8 3.786
336	111.7	9340	1129.8 3.723	9430	1137.8 3.75	9 9521	1145.7 3.795	9611 1153.7 3.831
335	110.3	9332	1128.8 3.769	9422	1136.8 3.86	5 9512	1144.7 3.842	9602 1152.6 3.878
334	108.8	9323	1127.8 3.816	9413	1135.8 3.85	9503	1143.7 3.890	9593 1151.6 3.926
333 332 331	107.3 105.8 104.4	9315 9306 9298	1126.7 3.863 1125.7 3.911 1124.7 3.959	9405 9396 9387	1134.7 1133.6 1132.6 3.99	0 9494 8 9485 7 9477	1142.6 3.937 1141.5 3.986 1140.5 4.035	9584 1150.5 3.975 9575 1149.4 4.023 9566 1148.4 4.073
330 329 328	103.0 101.6 100.2	9291 9282 9274	1123.7 4.007 1122.6 4.055 1121.6 4.104	9380 9370 9363	1131.5 4.04 1130.5 4.09 1129.5 4.14	4 9459 3 9451	1139.44.084 1138.44.133 1137.44.182	9558 1147.3 4.122 9548 1146.2 4.172 9540 1145.2 4.222
327	98.8	9265	1120.5 4.152	9354	1128.4 4.19	2 9442	1136.3 4.231	9531 1144.1 4.271
326	97.5	9257	1119.5 4.201	9345	1127.3 4.24	1 9434	1135.2 4.281	9522 1143.0 4.321
325	96.1	9248	1118.4 4.250	9337	1126.3 4.29	0 9425	1134.1 4.331	9513 1142.0 4.371

ahr.	Pounds 18re		1.56		1.57		-	1.58			1.59	1
Temperature, Degrees Fahr.	Pressure, Pour per Square Inch.	Quality.	Heat Contents. Specific	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.
372 371 370	177.5 175.3 173.2	5.5 4.2 3.0	1199.5 2.592 1198.5 2.616 1197.4 2.640	18.5 17.2 15.9	1207.9 1206.8 1205.8	2.655 2.680 2.706	32.9 31.5 30.0	1216.5 1215.4 1214.3	2.746	47.7 46.1 44.7	1225.3 1224.1 1222.9	2.810
369 368 367	171.1 169.0 166.9	1.7 0.4 9994	1196.42.665 1195.42.690 1194.3 2.719		1204.7 1203.7 1202.7	2.732 2.759 2.785	28.6 27.3 25.9	1213.2 1212.2 1211.1	2.824	43.3 41.8 40.4	1221.9 1220.8 1219.7	2.891
366 365 364	164.8 162.8 160.8	9985 9975 9966	1193.3 2.750 1192.3 2.780 1191.2 2.811	10.7 9.4 8.1	1201.6 1200.5 1199.5	2.811 2.838 2.865	24.5 23.2 21.8	1210.0 1209.0 1207.9	2.879 2.906 2.935	39.0 37.5 36.1	1218.6 1217.5 1216.4	2.974
363 362 361	158.8 156.8 154.8	9955 9946 9937	1190.2 2.843 1189.2 2.874 1188.1 2.906	5.5	1198.4 1197.4 1196.4	2.894 2.920 2.949	20.4 19.0 17.6	1206.7 1205.6 1204.5	2.993	34.6 33.2 31.8	1215.3 1214.2 1213.0	3.060
360 359 358	152.9 151.0 149.1	9927 9917 9908	1187.1 2.938 1186.1 2.971 1185.0 3.005		1195.3 1194.3 1193.3		16.3 14.9 13.6	1203.4 1202.3 1201.2	3.081	30.3 28.9 27.4	1211.9 1210.9 1209.8	3.148
357 356 355	147.2 145.3 143.5	9898 9889 9880	1183.9 3.040 1182.9 3.074 1181.9 3.109	9992 9983 9974	1192.2 1191.1 1190.0	3.069 3.104 3.139	12.2 10.9 9.5	1200.2 1199.1 1198.1	3.141 3.171 3.201	26.0 24.6 23.2	1208.7 1207.6 1206.5	3.240 3.270
354 353 352	141.6 139.8 138.0	9870 9860 9851	1180.9 3.143 1179.8 3.179 1178.7 3.215		1189.0 1187.9 1186.8	3.245	8.1 6.8 5.4	1197.0 1196.0 1195.0	3.264	21.8 20.4 19.0	1205.4 1204.3 1203.3	3.302 3.334 3.367
351 350 349	136.3 134.5 132.8	9841 9832 9822	1177.6 3.249 1176.6 3.286 1175.5 3.323	9934 9925 9915	1185.7 1184.7 1183.6	3.280 3.317 3.354	4.0 2.7 1 3	1193.9 1192.8 1191.7	3.360 3.392	17.5 16.0 14.6	1202.1 1201.0 1199.9	3.433
348 347 346	131.1 129.4 127.7	9813 9804 9795	1174.5 3.361 1173.5 3.399 1172.4 3.438	9906 9897 9887	1182.6 1181.6 1180.5	3.431 3.470	9999 9989 9979	1190.6 1189.6 1188.5	3.425 3.463 3.503	13.2 11.8 10.4	1198.8 1197.7 1196.7	3.499 3.534 3.570
345 344 343	126.0 124.4 122.7	9785 9776 9766	1171.3 3.477 1170.3 3.518 1169.2 3.561	9877 9868 9858	1179.4 1178.3 1177.2	3.593	9969 9959 9950	1187.4 1186.3 1185.2	3.584 3.627	8.9 7.5 6.0	1195.5 1194.4 1193.3	3.641
342 341 340	121.1 119.5 117.9	9757 9748 9739	1168.1 3.601 1167.1 3.643 1166.0 3.685		1176.1 1175.1 1174.0	3.720	9940 9931 9921	1184.1 1183.0 1182.0	1 1	4.6 3.2 1.8	1192.2 1191.1 1190.1	3.754 3.792
339 338 337	116.3 114.8 113.3	9730 9720 9710	1164.9 3.729 1163.8 3.774 1162.7 3.820	9810 9801	1172.9 1171.8 1170.7		9911 9901 9891	1180.9 1179.8 1178.7	3.799 3.845 3.891	9992 9982	1189.0 1187.8 1186.7	3.880
336 335 334	111.7 110.3 108.8	9701 9692 9683	1161.6 3.866 1160.6 3.914 1159.6 3.963	9791 9782 9773	1169.6 1168.5 1167.5	3.902 3.950 3.999	9882 9872 9863	1177.6 1176.5 1175.4	4.036	9972 9962 9953	1185.6 1184.5 1183.4	4.023
333 332 331	104.4	9664 9655	1158.5 4.012 1157.4 4.061 1156.3 4.111	9754 9745	1166.4 1165.3 1164.2	4.098 4.148	9843 9834	1174.3 1173.2 1172.1	4.135 4.186	9933 9923	1182.3 1181.1 1180.0	4.173 4.224
330 329 328	100.2	9637 9629	1155.2 4.161 1154.1 4.211 1153.1 4.261	9718	1163.1 1162.1 1161.0	4.249 4.299	9815 9806	1171.0 1170.0 1168.9	4.287 4.338		1178.9 1177.8 1176.7	4.378
327 326 325	98.8 97.5 96.1	9610	1152.0 4.311 1150.9 4.361 1149.8 4.412	9708 9699 9689	1159.9 1158.8 1157.7	4.349 4.400 4.451	9797 9787 9777	1167.8 1166.6 1165.5	4.440		1175.6 1174.5 1173.4	4.481

à.	Pounds 18re		1.52		1.53			1.54		1.55	
Temperature, Degrees Fahr.	Pressure, Poun per Square Inch.	Quality.	Heat Contents. Specific Volume.	Quality.	Heat Contents.	Specific Volume.	Quality.	Heat Contents.	Quality.	Heat Con- tents.	Specific Volume.
324 323 322	94.8 93.5 92.2	9239 9231 9223	1117.3 4.300 1116.3 4.352 1115.2 4.407	9319	1125.24 1124.14 1123.14	. 394	9415 9407 93 98	1133.0 4.3 1131.9 4.4 1130.9 4.4	35 9495	1140.8 1139.8 1138.7	4. 4 23 4.477 4.532
321 320 319	90.9 89.6 88.3	9215 9207 9199	1114.2 1113.2 1112.1 4.576	9302 9294 9286	1122.0 1121.0 1119.9	. 562	9389 9382 9373	1129.8 4.5 1128.8 4.6 1127.7 4.6	9477 9469 9460	1137.6 1136.6 1135.5	4.647
318 317 316	87.1 85.9 84.6	9190 9182 9173	1111.1 4.636 1110.0 4.695 1108.9 4.755	9269	1118.8 4 1117.8 4 1116.6 4	. 739	9364 9355 9346	1126.64.7 1125.54.7 1124.44.8	33 9442	1134.4 1133.3 1132.1	4.828
315 314 313	83.4 82.3 81.1	9166 9157 9149	1107.9 1106.8 1105.8 4.878 1105.8	9243	1115.6 1114.6 1113.5	.862 .924 .987	9338 9330 9321	1123.44.9 1122.34.9 1121.25.0	70 9416	1131.1 1130.0 1128.9	5.016
312 311 310	79.9 78.8 77.6	9141 9133 9125	1104.7 5.003 1103.6 5.066 1102.5 5.131	9219	1112.45 1111.35 1110.25	.114	9313 9304 9295	1120.1 5.0 1119.0 5.1 1117.9 5.2	31 9390	1127.8 1126.7 1125.6	5. 20 9
309 308 307	76.5 75.4 74.3	9116 9109 9100	1101.5 1100.4 5.264 1099.3 5.333	9194	1109.25 1108.15 1107.05	. 313	9287 9279 9270	1116.8 5.2 1115.7 5.3 1114.6 5.4	9372 9364 9355	1124.5 1123.4 1122.3	5.411
306 305 304	73.2 72.2 71.1	9093 9084 9076	1098.2 5.403 1097.1 5.473 1096.0 5.545	9177 9169 9160	1106.05 1104.85 1103.75	. 524	9262 9253 9244	1113.6 5.5 1112.4 5.5 1111.3 5.6	5 9337	1121.3 1120.1 1118.9	5.626
303 302 3 01	70.0 69.0 68.0	9068 9059 9052	1095.0 5.620 1093.9 5.693 1092.8 5.769	9152 9143 9136	1102.7 5 1101.6 5 1100.4 5	.745	9236 9227 9219	1110.3 5.7 1109.2 5.7 1108.0 5.8	8 9311	1117.9 1116.8 1115.6	5.850
300 299 29 8	67.0 66.0 65.0	9043 9036 9027	1091.7 5.846 1090.7 5.924 1089.6 6.002	9127 9119 9111	1099.35. 1098.35. 1097.26.	. 978	9210 9203 9194	1106.9 5.9 1105.9 6.0 1104.8 6.1	2 9286	1114.5 1113.5 1112.3	6.087
297 296 295	$64.0 \\ 63.1 \\ 62.1$	9020 9011 9004	1088.5 6.083 1087.4 6.165 1086.3 6.248	9103 9094 9086	1096.16. 1095.06. 1093.96.	. 220	9186 9177 9169	1103.7 6.19 1102.5 6.29 1101.4 6.30	7 9260	1111.2 1110.0 1108.9	6.334
294 293 29 2	61.2 60.2 59.3	8995 8987 8980	1085.2 6.332 1084.1 6.418 1083.1 6.505	9077 9070 9062	1092.8 6. 1091.7 6. 1090.6 6.	476	9152	1100.3 6.4 1099.2 6.5 1098.1 6.6	5 9234	1107.8 1106.7 1105.6	8.593
291 290 289	58.4 57.5 56.7	8972 8963 8956	1082.0 6.594 1080.9 6.683 1079.8 6.775	9054 9045 9037	1089.5 6. 1088.4 6. 1087.3 6.	654 744 837	9127	1097.0 6.7 1095.9 6.8 1094.8 6.8	4 9209	1104.5 1103.4 1102.2	3.865
288 287 286	55.8 54.9 54.1	8947 8940 8932	1078.7 6.868 1077.6 6.964 1076.5 7.061		1086.2 6. 1085.1 7. 1084.0 7.	027	9102	1093.6 6.99 1092.5 7.09 1091.4 7.18	0 9183	1101.1 1100.0 1098.9	7.153 l
285 284 283	53.2 52.4 51.6	8916	1075.4 7.160 1074.3 7.259 1073.2 7.361	8996	1082.9 7. 1081.7 7. 1080.6 7.	325	9077	1090.3 1089.1 1088.0 7.49	0 9158	1097.7 1096.5 1095.4	455
282 281 280	50.8 50.0 49.19	8892	1072.1 7.465 1071.0 7.570 1069.9 7.677	8973	1079.5 7. 1078.4 7. 1077.3 7.	639	9053	1086.9 7.60 1085.8 7.70 1084.7 7.81	7 9133	1094.3 1093.2 1092.1	.774
279 278 277	48.41 47.64 46.88	8876 8868 8860	1068.8 7.784 1067.6 7.895 1066.5 8.006	8956 8948 8940	1076.2 7. 1075.0 7. 1073.9 8.	854 966 077	9028	1083.6 7.92 1082.4 8.03 1081.3 8.14	7 9107	1090.9 1089.7 1088.6	3.106

e,	e, e,		1.56		1.57			1.58		1.59	
Temperature, Degrees Fahr.	Pressure, Pounds per Square Inch.	Quality.	Heat Contents. Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Contents. Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.
324 323 322	94.8 93.5 92.2	9591 9583 9573	1148.7 4.464 1147.6 4.518 1146.5 4.574	9679 9670 9661	1156.5 4 1155.4 4 1154.3 4	L. 5591	9767 9758 9749	1164.3 4.545 1163.2 4.600 1162.1 4.657	9855 1 9846 1 9836 1	172.2 171.1 169.9	4.641
321 320 319	90.9 89.6 88.3	9564 9556 9547	1145.4 4.631 1144.4 4.690 1143.2 4.750	9652 9643 9634	1153.24 1152.24 1151.04	. 673 . 733 . 793	9739 9730 9721	1161.0 4.715 1160.0 4.775 1158.8 4.835	9818 1	168.8 167.8 1 66. 6	4.818
318 317 316	87.1 85.9 84.6	9538 9528 9519	1142.2 4.811 1141.0 4.872 1139.9 4.934	9625 9615 9606	1149.94 1148.84 1147.64	. 855 . 916 . 979	9711 9702 9692	1157.7 4.897 1156.6 4.960 1155.4 5.022	9788 1	165.5 164.4 163.1	5.004
315 314 313	83.4 82.3 81.1	9511 9502 9493	1138.9 4.998 1137.8 5.062 1136.7 5.126	9597 9588 9579	1146.65 1145.55 1144.45	. 108	9684 9674 9665	1154.3 5.088 1153.2 5.152 1152.1 5.218	9760 1	162.1 161.0 159.8	5.198
312 311 310	79.9 78.8 77.6	9484 9475 9466	1135.55.191 1134.45.256 1133.35.323	9570 9561 9552	1143.2 1142.1 1141.0	303	9656 9646 9637	1151.0 5.284 1149.8 5.350 1148.7 5.419	9742 1 9732 1 9722 1	158.7 157.5 156.4	5.397
309 308 307	76.5 75.4 74.3	9457 9449 9439	1132.2 5.391 1131.15.460 1130.0 5.532	9542 9534 9524	1139.9 1138.8 1137.6	.510	9627 9619 9609	1147.6 5.488 1146.4 5.559 1145.3 5.631	9704 1	155.3 154.1 153.0	5.535 5.607 5.680
306 305 304	73.2 72.2 71.1	9431 9422 9413	1128.9 5.604 1127.7 5.677 1126.6 5.751	9516 9506 9497	1136.65 1135.35 1134.25	.654 .728 .803	9600 9591 9581	1144.2 5.705 1143.0 5.779 1141.8 5.854	9675 1	151.9 150.6 149.5	5.829
303 302 301	70.0 69.0 68.0	9404 9395 9387	1125.5 5.827 1124.4 5.903 1123.2 5.981	9488 9479 9471	1133.25 1132.05 1130.86	956	9573 9563 9554	1140.8 5.931 1139.6 6.008 1138.5 6.088	9657 9647 9638 1	148.4 147.2 146.1	5.983 6.061 6.141
300 299 298	67.0 66.0 65.0	9378 9369 9360	1122.1 6.061 1121.1 6.142 1119.9 6.223	9461 9453 94 4 3	1129.76 1128.66 1127.56	. 196	9545 9536 9527	1137.3 6.169 1136.2 6.251 1135.0 6.333	9620 1	144.9 143.8 142.6	6.306
297 296 295	64.0 63.1 62.1	9352 9343 9334	1118.8 6.306 1117.6 6.390 1116.5 6.476	9435 9426 9417	1126.46 1125.26 1124.16	. 447	9518 9508 9500	1133.9 6.418 1132.7 6.504 1131.6 6.591	9601 9591 9582 1	141.5 140.3 139.1	6.560
294 293 292	61.2 60.2 59.3	9325 9317 9308	1115.4 6.563 1114.3 6.652 1113.1 6.742	9407 9399 9390	1122.9 1121.8 1120.6	.711	9490 9481 9473	1130.5 6.679 1129.4 6.770 1128.2 6.861	9572 9564 9555	138.0 136.9 135.7	6.737 6.828 6.920
291 290 289	58.4 57.5 56.7	9300 9291 9282	1112.0 6.834 1110.9 6.926 1109.7 7.021	9382 9372 9364	1119.5 1118.4 1117.2	. 894 . 987 . 083	9464 9454 9445	1127.1 6.954 1125.9 7.048 1124.7 7.145	9536 1	134.6 133.4 132.2	7.109
288 287 286	55.8 54.9 54.1	9273 9265 9256	1108.5 7.117 1107.4 7.216 1106.3 7.316	9355 9346 9337	1116.07 1114.97 1113.87	. 180 . 280 . 380	9436 9427 9418	1123.5 7.242 1122.4 7.343 1121.2 7.444	9508 1	131.0 129.9 128.7	7.406
285 284 283	53.2 52.4 51.6		1105.2 7.419 1104.0 7.521 1102.9 7.626		1112.6 1111.4 1110.3			1120.0 7.548 1118.9 7.653 1117.7 7.759	9481 1	127.5 126.3 125.2	
282 281 280	50.8 50.0 49,19	9213	1101.8 7.733 1100.7 7.842 1099.5 7.953	9302 9293 9285	1109.27 1108.17 1106.9	'.911	9382 9374 9365	1116.6 7.868 1115.5 7.979 1114.3 8.091	9454 1	124.0 122.9 121.7	8 N47 I
279 278 277	48.41 47.64 46.88	9187	1098.2 8.064 1097.1 8.177 1096.0 8.292	9267	1105.7 1104.5 1103.3	3.248	9355 9347 9338	1113.18.204 1111.98.319 1110.78.436	9435 1 9426 1 9417 1	120.5 119.2 118.0	8.390

ahr.	Pounds 1are		1.52		1.53	1.54			1.55	
Temperature, Degrees Fahr.	Pressure, Pour per Square Inch.	Quality.	Heat Contents. Specific	Quality.	Heat Contents. Specific Volume.	Quality. Heat Contents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.
276 275 274	46.13 45.39 44.67	8853 8845 8837	1065.48.119 1064.38.236 1063.28.356	8932 8924 8916	1072.8 1071.7 1070.5 8.43	9003 1079.0	8.265 8.383 8.505	9091 9083 9074	1087.5 1086.4 1085.2	8.336 8.456 8.579
273 272 271	43.95 43.24 42.54	8829 8822 8814	1062.1 8.477 1061.0 8.602 1059.9 8.728	8908 8900 8892	1069.4 8.553 1068.3 8.679 1067.2 8.800	8979 1075.6	8.629 8.756 8.884	9066 9058 9049	1084.1 1082.9 1081.8	8.704 8.832 8.962
270 269 268	41.84 41.16 40.49	8806 8798 8790	1058.78.852 1057.68.985 1056.59.117	8884 8876 8868	1066.0 8.93 1064.9 9.068 1063.8 9.198	8955 1072.2	9.009 9.144 9.279	9041 9033 9024	1080.6 1079.5 1078.3	9.088 9.224 9.360
267 266 265	39.83 39.17 38.53	8782 8774 8767	1055.4 9.250 1054.2 9.390 1053.1 9.532	8860 8851 8844	1062.6 9.33 1061.4 9.47 1060.3 9.61	8929 1068.7		9016 9007 8999	1077.1 1075.9 1074.8	9.496 9.639 9.784
264 263 262	37.89 37.26 36.64	8759 8751 8743	1051.9 9.672 1050.8 9.812 1049.7 9.961	8836 8828 8820	1059.2 9.757 1058.1 9.899 1056.9 10.08	8906 1065.3	9.985	8991 8983 8975	1073.6 1072.5 1071.3	9.928 10.07 10.22
261 260 259	36.02 35.42 34.83	8735 8728 8720	1048.6 10.11 1047.4 10.25 1046.3 10.41	8812 8804 8796	1055.8 1054.6 1053.4 10.50	8881 1061 . 8	10.28 10.44 10.59	8966 8958 8949	1070.2 1069.0 1067.8	10.53
258 257 256	34.24 33.66 33.09	8712 8705 8697	1045.1 10.57 1044.0 10.73 1042.9 10.90	8788 8781 8773	1052.2 1051.1 1050.0 10.83	8865 1059.4 8857 1058.3 8849 1057.2	10.75 10.92 11.09	8941 8933 8925	1066.6 1065.5 1064.3	11.01
255 254 253	32.53 31.97 31.42	8689 8681 8673	1041.7 1040.5 1039.4 11.41	8765 8757 8749	1048.8 1047.6 1046.5 11.33	8 8832 1054.7	11.43	8917 8908 8900	1063.1 1061.9 1060.8	11.53
252 251 250	30.88 30.35 29.82	8666 8658 8650	1038.2 11.59 1037.1 11.77 1035.9 11.95	8741 8733 8725	1045.4 11.69 1044.2 11.8 1043.0 12.0	8808 1051.3		8892 8884 8875	1059.6 1058.4 1057.2	12.07
249 248 247	29.30 28.79 28.29	8643 8635 8628	1034.8 12.14 1033.6 12.33 1032.5 12.53	8718 8710 8702	1041.9 1040.7 1039.6 12.64	8784 1047.7	12.35 12.54 12.74	8867 8859 8851	1056.0 1054.8 1053.7	12.46 12.65 12.85
246 245 244	27.80 27.31 26.83	8620 8612 8604	1031.3 12.73 1030.2 12.93 1029.0 13.13	8694 8686 8679	1038.4 1037.3 1036.1 13.24	8760 1044.3	12.95 13.15 13.36	8843 8835 8827	1052.5 1051.3 1050.1	13.06 13.26 13. 4 7
243 242 241	26.35 25.88 25.42	8597 8589 8581	1027.9 13.33 1026.8 13.55 1025.6 13.76	8671 8663 8655	1035.0 1033.8 1032.6 13.88	8737 1040.8	13.56 13.78 14.00	8819 8811 8802	1049.0 1047.8 1046.6	13.89
240 239 238	24.97 24.52 24.08	8574 8566 8559	1024.4 1023.2 14.21 1022.0 14.44	8647 8639 8632	1031.4 1030.2 14.33 1029.0	8713 1037.2		8794 8786 8778	1045.3 1044.2 1043.0	14.58
237 236 235	23.64 23.21 22.79	8551 8543 8535	1020.9 14.67 1019.7 14.92 1018.5 15.17	8624 8616 8608	1027.9 1026.7 1025.5 15.30	8697 1034.8 8689 1033.6 8681 1032.4	14.92 15.17 15.43	8770 8762 8754	1041.8 1040.6 1039.4	15.30
234 233 232	22.38 21.97 21.57	8528 8521 8513	1017.3 15.42 1016.1 15.67 1014.9 15.93	8601 8593 8585	1024.2 15.55 1023.1 15.86 1021.9 16.06	8673 1031.2 8666 1030.0 1028.8	15.68 15.94 16.20	8746 8738 8729	1038.1 1036.9 1035.7	15.81 15.07 16.33
231 230 229	21.17 20.78 20.40	8505 8498 8490	1013.8 16.19 1012.7 16.46 1011.4 16.74	8577 8570 8562	1020.8 1019.6 1018.3 16.88	8649 8642 1026.5 8633	16.47 16.74 17.02	8722 8714 8705	1034.5 1033.3 1032.1	16.61 16.88 17.17

ahr.	Pounds 18.79		1.56		1.57			1.58			1.59	
Temperature, Degrees Fahr.	Pressure, Pour per Square Inch.	Quality.	Heat Con- tents.	Volume.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.
276 275 274	46.13 45.39 44.67	9170 9162 9153	1094.98. 1093.78. 1092.58.	409 9250 530 9241 654 9232	1102.2 1101.1 1099.9	8.482 8.604 8.729	9329 9320 9312	1109.6 1108.4 1107.2	8.677	9408 9400 9391	1116.9 1115.7 1114.5	8.628 8.751 8.878
273 272 271	43.95 43.24 42.54	9145 9136 9128	1091.48. 1090.38. 1089.19.	779 9224 908 9215 039 9206	1098.8 1097.6 1096.4	8.855 8.985 9.116	9303 9294 9285	1106.1 1104.9 1103.7	8.931 9.062 9.194	9382 9373 9364	1113.4 1112.2 1111.0	9.138
270 269 268	41.84 41.16 40.49	9119 9111 9102	1087.99. 1086.89. 1085.69.	303 9189	1095.2 1094.1 1092.9	9.383	9276 9267 9258	1102.5 1101.3 1100.1	9.463	9355 9346 9336	1109.8 1108.6 1107.4	9.543
267 266 265	39.83 39.17 38.53	9094 9085 9077	1084.49. 1083.29. 1082.19.	721 9162	1091.7 1090.4 1089.3	9.805	9250 9240 9232	1098.9 1097.7 1096.5	9.888	9328 9318 9310	1106.2 1104.9 1103.8	9.971
264 263 262	37.89 37.26 36.64	9069 9060 9052	1080.9 1079.7 1078.5 10).16 9137	1088.1 1087.0 1085.8	10.24	9215	1095.3 1094.2 1093.0	10.33	9301 9292 9283	1102.6 1101.4 1100.2	10.42
261 260 259	36.02 35.42 34.83	9043 9035 9026	1077.4 10 1076.2 10 1075.0 10	0.46 9120 0.62 9111 0.78 9103	1084.6 1083.4 1082.2	10.71	9197 9188 9179	1091.8 1090.6 1089.4	10.80	9274 9265 9256	1099.0 1097.8 1096.6	10,89
258 257 256	34.24 33.66 33.09	9017 9010 9001	1073.8 10 1072.7 11 1071.5 11	1.11 9086	1080.9 1079.8 1078.6	11.20 11.37	9162 9153	1088.1 1087.0 1085.8	11.30	9247 9238 9229	1095.3 1094.1 1092.9	11.39
255 254 253	32.53 31.97 31.42	8993 8984 8975	1070.3 11 1069.0 11 1067.9 11	L.63 9060	1077.4 1076.1 1075.0	11.54 11.72 11.91	9144 9135 9127	1084.6 1083.3 1082.1	11.82	9220 9211 9202	1091.7 1090.4 1089.2	11.92
252 251 250	30.88 30.35 29.82	8967 8959 8950	1066.7 11 1065.5 12 1064.3 12	2.18 9034 2.37 9025	1073.8 1072.6 1071.4	12.28	9118 /9109 9101	1080.9 1079.7 1078.5	12.58	9194 9185 9176	1088.0 1086.8 1085.6	12.48
249 248 247	29.30 28.79 28.29	8942 8934 8926	1063.1 12 1061.9 12 1060.7 12	2.96 9001	1070.2 1069.0 1067.8	12.67 12.86 13.07	9092 9084 9075	1077.3 1076.0 1074.8	12.97	9167 9158 9150	1084.4 1083.1 1081.9	13.08 13.29
246 245 244	27.80 27.31 26.83	8917 8909 8901	1059.5 13 1058.4 13 1057.2 13	8.58 8975	1066.6 1065.4 1064.2	13.28 13.48 13.70	9066 9058 9049	1073.6 1072.5 1071.3	13.60 13.81	9141 9132 9124	1080.7 1079.5 1078.3	13.92
243 242 241	26.35 25.88 25.42	8893 8885 8876	1056.0 13 1054.8 14 1053.6 14	1.01 8958 1.24 8950	1063.0 1061.8 1060.6	14.13	9041 9032 9023	1070.1 1068.8 1067.6	14.24	9114 9106 9097	1077.1 1075.9 1074.6	14.59
240 239 238	24.97 24.52 24.08	8868 8859 8851	1052.3 14 1051.1 14 1049.9 14	.70 8933	1059.3 1058.1 1056.9	14.82	9015 9006 8998	1066.3 1065.1 1063.9	14.94 15.18	9089 9080 9071	1073.3 1072.1 1070.9	14.82 15.06 15.30
237 236 235	23.64 23.21 22.79	8843 8835 8826	1048.7 15 1047.5 15 1046.3 15	.43 8908 .68 8899	1055.7 1054.5 1053.3	15.55 15.81	8989 8981 8972	1062.7 1061.5 1060.2	15.94	9062 9054 9044	1069.7 1068.4 1067.1	15.81 16.07
234 233 232	22.38 21.97 21.57	8818 8810 8802	1045.0 15 1043.8 16 1042.6 16	3.20 8883 8874	1052.0 1050.8 1049.5	16.34 16.60	8963 8955 8946	1058.9 1057.7 1056.4	16.74	9036 9028 9018	1065.8 1064.6 1063.3	16.60 16.87
231 230 229	21.17 20.78 20.40	8794 8786 8777	1041.4 16 1040.2 17 1039.0 17	.74 8866 .02 8858 .31 8849	1048.3 1047.1 1045.9	16.88 17.16 17.45	8938 8930 8921	1055.2 1054.0 1052.8	17.02 17.30 17.59	901Q 9002 8992	1062.1 1060.9 1059.6	17.44

ahr.	Pounds aare		1.52		1.53			1.54		1.5ŏ	
Temperatures, Degrees Fahr.	Pressure, Pour per Square Inch.	Quality.	Heat Contents. Specific Volume.	Quality.	Heat Con-	Specific Volume.	Quality.	Heat Contents. Specific Volume.	Quality.	Heat Contents.	Volume.
228 227 226	20.02 19.64 19.28	8482 8475 8468	1010.2 1009.1 1007.9 17.6	8546	1017.1 1015.9 1014.7	17.45	8625 8618 8611	1024.0 17.31 1022.8 17.60 1021.6 17.89	8689	1030.8 17. 1029.6 17. 1028.4 18.	74
225 224 223	18.91 18.56 18.21	8459 8452 8445	1006.7 17.9 1005.5 18.2 1004.4 18.5	85 23	1013.5 1012.3 1011.2		8602 8594 8586	1020.4 1019.2 1018.0 18.8	8665	1027.2 18. 1026.0 18. 1024.8 18.	66
222 221 220	17.86 17.52 17.19	8437 8430 8422	1003.2 18.8 1002.0 19.1 1000.8 19.4	8500	1010.0 1008.8 1007.6	19.32	8579 8571 85 63	1016.8 1015.6 1014.4 19.8	8642	1023.6 1022.4 1021.2 19.	64
219 218 217	16.86 16.54 16.22	8414 8406 8339	999.6 998.3 20.1 997.1	8484 8477 8469	1006.4 1005.1 1003.9	20.34	8555 8547 8539	1013.1 20.18 1011.8 20.50 1010.6 20.80	8617	1019.9 20. 1018.6 20. 1017.4 21.	67
216 215 214	15.90 15.60 15.29	8392 8384 8377	995.9 20.8 994.7 21.2 993.5 21.6	8454	1002.7 1001.5 1000.3	21.42	8531 8524 851 6	1009.4 21.23 1008.2 21.66 1007.0 21.98	8593	1016.2 21. 1015.0 21. 1013.7 22.	78
213 212 211	14.99 14.70 14.41	8369 8361 8354	992.3 991.1 989.9 22.8	8431	999.1 997.9 996.7	22.18 22.58 22.99	8508 8500 8493	1005.8 22.33 1004.6 22.76 1003.4 23.18	8569	1012.5 22. 1011.3 22. 1010.1 23.	95
210 209 208	14.13 13.85 13.57	8347 8340 8332	988.7 23.2 987.5 23.6 986.3 24.0	8409	994.2	23.40 23.81 24.25	8485 8478 8470	1002.1 23.59 1000.9 24.0 999.6 24.4	l 8546	1008.8 23. 1007.5 24. 1006.3 24.	20
207 206 205	13.30 13.03 12.77	8325 8317 8309	985.1 24.4 983.8 24.9 982.6 25.3	8385	991.7 990.5 989.3	24.68 25.14 25.60	8462 8454 8446	998.4 24.89 997.2 25.3 995.9 25.8	8530 8522 8514	1005.1 25. 1003.8 25. 1002.6 26.	55
204 203 202	12.51 12.26 12.01	8302 8294 8287	981.4 25.8 980.2 26.3 979.0 26.8	8370 8362 8355	986.8	26.07 26.55 27.05	8438 8430 8423	994.7 26.29 993.4 26.70 992.2 27.20	8498	1001.3 26. 1000.1 26. 998.9 27.	50 98 48
201 200 199	11.77 11.53 11.29	8280 8272 8265	977.8 27.3 976.5 27.8 975.3 28.3	l 8340	983.1	27.54 28.04 28.55	8415 8407 8399	991.0 27.70 989.7 28.20 988.5 28.70	8475	997.6 27. 996.3 28. 995.1 29.	49
198 197 196	11.06 10.83 10.61	8257 8250 8242	974.1 28.8 972.8 29.3 971.5 29.9	8317	979.4	29.08 29.62 30.17	8392 8384 8376	987.3 29.3 985.9 29.8 984.7 30.4	8451	993.9 29. 992.5 30. 991.2 30.	55 09 65
195 194 193	10.39 10.17 9.96	8235 8227 8220	970.4 30.4 969.1 31.0 967.9 31.6	7 8294	975.6	30.74 31.33 31.93	8368 8360 8353	983.4 30.99 982.2 31.5 981.0 32.1	8427	990.0 31. 988.7 31. 987.5 32.	24 83 44
192 191 190	9.75 9.54 9.34	8212 8204 8197	966.7 32.2 965.4 32.9 964.2 33.5	1 8270	973.2 971.9 970.7	32.54 33.17 33.81	8345 8336 8329	979.7 978.4 977.2 34.00	4 8403	986.2 33. 984.9 33. 983.7 34.	35
189 188 187	9.14 8.95 8.76		963.0 34.1 961.7 34.8 960.5 35.5	8247	968.2	34.47 35.13 35.80		976.0 34.74 974.7 35.4 973.4 36.09	l 83 7 9	982.4 981.1 979.9 36.	69
186 185 184	8.57 8.38 8.20	8166 8159 8151	950.2 36.2 958.0 36.9 956.7 37.6) 8224	965.7 964.5 963.2	36.49 37.20 37.93	8297 8290 8282	972.1 36.78 970.9 37.49 969.6 38.24	8355	978.6 37. 977.4 37. 976.0 38.	79
183 182 181	8.02 7.85 7.68	8144 8137 8130	955.5 38.3 954.3 39.1 953.0 39.9	8209 8202 8194	961.9 960.7 959.4	38.68 39.46 40.26	8274 8267 8259	968.4 38.99 967.1 39.77 965.8 40.58	8339 8332 8324	974.8 39. 973.5 40. 972.2 40.	08

ahr.	Pounds 18re		1.56			1.57			1.58			1.59	
Temperatures, Degrees Fahr.	Pressure, Pour per Square Inch.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Contents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.
228 227 226	20.02 19.64 19.28	8768 8761 8754	1037.7 1036.5 1035.3	17.89	8840 8832 8825	1044.6 1043.4 1042.2	18.04	8912 8904 8896	1051.5 1050.3 1049.0	18.18	8983 8975 8968	1058.3 1057.1 1055.9	18.33
225 224 223	18.91 18.56 18.21	8744 8736 8728	1034.1 1032.8 1031.6	18.82	8815 8807 8799	1041.0 1039.7 1038.5	18.97	8887 8878 8870	1047.8 1046.5 1045.3	19.12	8958 8949 8941	1054.6 1053.3 1052.1	19.28
222 221 220	17.86 17.52 17.49	8720 8712 8704	1030.4 1029.2 1028.0	19.80	8791 8783 8774	1037.2 1036.0 1034.8	19.63 19.96 20.30	8862 8853 8845	1044.0 1042.8 1041.6	20.12	8932 8924 8915	1050.9 1049.7 1048.4	20.28
219 218 217	16.86 16.54 16.22	8695 8687 8679	1026.7 1025:4 1024.2	20.84	8765 8757 8749	1033.5 1032.2 1031.0	21.01	8836 8827 8819	1040.3 1039.0 1037.7	20.82 21.18 21.54	8906 8897 8889	1047.1 1045.8 1044.5	21.34
216 215 214	15.90 15.60 15.29	8671 8663 8655	1022.9 1021.7 1020.5	21.95	8741 8733 8724	1029.7 1028.5 1027.2	$21.75 \\ 22.13 \\ 22.52$	8811 8802 8794	1036.4 1035.2 1033.9	21.92 22.30 22.70	8880 8872 8863	1043.2 1042.0 1040.7	22.48
213 212 211	14.99 14.70 14.41	8647 8638 8631	1019.3 1018.0 1016.8	23.13	8716 8708 8700	1026.0 1024.7 1023.5	23.32	8785 8777 8769	1032.7 1031.4 1030.2	23.50	8855 8846 8838	1039.4 1038.1 1036.9	23.69
210 209 208	14.13 13.85 13.57	8623 8615 8607	1015.5 1014.2 1013.0	24.40	8692 8684 8676	1022.2 1020.9 1019.7	24.16 24.59 25.04	8761 8753 8744	1028.9 1027.6 1026.3	24.35 24.79 25.24	8830 8822 8813	1035.6 1034.3 1033.0	24.98
207 206 205	13.30 13.03 12.77	8599 8590 8582	1011.7 1010.5 1009.2	25.75	8667 8659 8651	1018.4 1017.1 1015.9	25.96	8736 8727 8719	1025.1 1023:8 1022.5	25.69 26.16 26.64	8804 8796 8787	1031.7 1030.4 1029.1	26.37
204 203 202	$12.51 \\ 12.26 \\ 12.01$	8574 8566 8558	1007.9 1006.7 1005.5	27.20	8642 8634 8626	1014.6 1013.3 1012.1	26.92 27.41 27.92	8710 8702 8694	1021.2 1019.9 1018.7	27.13 27.63 28.14	8778 8770 8762	1027.8 1026.6 1025.3	27.84
201 200 199	11.77 11.53 11.29	8550 8542 8534	1004.2 1002.9 1001.7	28.72	8618 8610 8601	1010.8 1009.5 1008.3	28.43 28.94 29.48	8685 8677 8669	1017.4 1016.1 1014.8	29.17	8753 8745 8736	1024.0 1022.7 1021.4	29.40
198 197 196	11.06 10.83 10.61	8526 8518 8509	1000.4 999.1 997.8	29.78 30.33 30.90	8593 8585 8576	1007.0 1005.6 1004.3	30.02 30.57 31.14	8661 8652 8643	1013.6 1012.2 1010.9	30.25 30.81 31.38	8728 8719 8710	1020.2 1018.7 1017.4	31.05
195 194 193	10.39 10.17 9.96	8502 8494 8486	996.5 995.2 994.0	31.48 32.08 32.70	8569 8560 8552	1003.1 1001.8 1000.5	31.73 32.33 32.95	8635 8627 8619	1009.6 1008.3 1007.1	32.58	8702 8693 8685	1016.2 1014.9 1013.6	32.8 3
192 191 190	9.75 9.54 9.34	8477 8469 8461	992.7 991.4 990.2	33.97	8544 8535 8527	999.2 997.9 996.7	34.23	8610 8601 8593	1005.7 1004.4 1003.2	34.50	8676 8667 8659	1012.3 1010.9 1009.7	34.76
189 188 187	9.14 8.95 8.76	8453 8445 8437	986.4	35.29 35.97 36.66	8519 8510 8502	992.8	35.57 36.25 36.94	8568	1001.9 1000.6 999.3	35.84 36.53 37.23	8651 8642 8634	1008.4 1007.0 1005.8	36.81
186 185 184	8.57 8.38 8.20	8428 8420 8412		37.36 38.08 38.84		991.5 990.2 988.9	37.65 38.38 39.14	8559 8551 8542	998.0 996.7 995.3	37.94 38.68 39.44	8625 8616 8607	1004.4 1003.1 1001.8	38.97
183 182 181	8.02 7.85 7.68	8404 8397 8389	1 979.9	39.60 40.40 41.21	8461	986.4	39.91 40.71 41.53	8534 8526 8518	992.8	40.21 41.02 41.85	8599 8591 8583	1000.5 999.2 997.8	40.52 41.33 42.17

, i	Pounds 18re	j	1.52			1.53			1.54			1.55	
Temperature, Degrees Fahr.	Pressure, Pou per Square Inch.	Quality.	Heat Contents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Contents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.
180 179 178	7.51 7.35 7.19	8122 8114 8107	950.4	40.77 41.55 42.40	8186 8179 8171	958.1 956.8 955.6	41.09 41.88 42.74	8243	964.5 963.2 961.9	41.42 42.21 43.07	8308	970.8 969.6 968.3	41.74 42.54 43.41
177 176 175	7.03 6.87 6.71	8100 8092 8084	946.6	43.25 44.10 45.03	8164 8156 8148	954.3 953.0 951.7	43.59 44.45 45.39	8220	960.7 959.3 958.1	43.94 44.80 45.74	8292 8284 8276	967.0 965.7 964.4	44.28 45.15 46.10
174 173 172	6.56 6.42 6.27	8077 8070 8062	942.9	45.96 46.88 47.81	8141 8133 8126	950.5 949.2 947.9	46.32 47.25 48.19	8197	956.8 955.5 954.3	46.68 47.62 48.56	8261	963.1 961.9 960:6	47.05 47.99 48.94
171 170 169	6.13 5.99 5.85	8054 8047 8039	939.0	48.81 49.89 51.0	8117 8110 8102	946.6 945.3 944.1		8181 8173 8165	952.9 951.6 950.3		8244 8236 8228	959.2 957.9 956.6	49.96 51.1 52.2
168 167 166	5.72 5.59 5.46	8032 8024 8017	935.2	52.0 53.1 54.3	8095 8087 8079	942.8 941.5 940.2		8158 8150 8142	949.1 947.8 946.5	54.0	8221 8212 8205	955.3 954.0 952.7	53.3 54.4 55.5
165 164 163	5.33 5.21 5.09	8009 8002 7994	931.4	55.3 56.5 57.6	8072 8064 8057	938.9 937.6 936.3		8134 8127 8119	945.2 943.9 942.6	57.4	8197 8189 8181	951.4 950.1 948.8	56.6 57.8 59.0
162 161 160	4.969 4.852 4.738	7987 7979 7972	927.6	58.9 60.2 61.5	8049 8041 8034	935.0 933.8 932.5	60.6	8111 8103 8096	941.2 940.0 938.7	61.1	8173 8165 8157	947.5 946.2 944.9	60.2 61.6 63.0
159 158 157	4.626 4.517 4.409	7964 7957 7950	923.7	32.8 34.2 35.7	8026 8018 8011	931.2 929.9 928.6	64.7	8088 8080 8072	937.4 936.0 934.8	65.2	8150 8142 8134	943.5 942.2 940.9	64.3 65.7 67.2
156 155 154	4.303 4.200 4.099	7942 7934 7926	919 81 6	57.1 58.5 70.1	8003 7995 7987	927.3 926.0 924.6	69.1	8065 8056 8048	933.4 932.1 930.8	69.6	8126 8118 8109	939.6 938.3 936.9	68.7 70.1 71.7
153 152 151	4.000 3.903 3.808	7919 7911 7903	915.9 7	71.6 73.2 74.8	7980 7972 7964	923.4 922.0 920.7	73.7	8041 8033 8024	929.5 928.2 926.8	74.3	3102 3093 3085	935.6 934.3 932.9	73.2 74.9 76.6
150 149 148	3.715 3.624 3.535	7896 7888 7881	913.3 912.0 910.7	76.5 78.3 30.1	7957 7949 7941	919.4 918.1 916.8	78.8	8017 8009 8002	925.5 924.2 922.9	79.4	3078 3069 3062	931.6 930.3 929.0	78,3 80.0 81.9
147 146 145	3.447 3.361 3.278	7873 7866 7858	908.1 8	31.9 33.8 35.6	7933 7926 7917	915.5 914.2 912.8	84.4	7993 7986 7977	921.5 920.2 918.9	85.0	3053 3046 3037	927.6 926.3 924.9	83.8 85.7 87.6
144 143 142	3.196 3.116 3.037	7850 7842 7835	904.1 8	37.6 39.6 31.7	7910 7902 7894	911.5 910.2 908.9	90.3	7970 7961 7954	916.2	88.9 91.0 93.1	3029 3021 3013	923.6 922.2 920.9	89.6 91.7 93.8
141 140 139	2.960 2.885 2.812	7827 7820 7812		3.9 6.0 8:3	7887 7879 7871	907.5 906.2 904.9	96.8	7946 7938 7930	913.5 912.2 910.8	95.3 97.5 99.8	3005 7997 7989	919.6 918.2 916.8	96.0 98.2 00.5
138 137 136	2.740 2.669 2.600	7805 7797 7789	897.6 896.2 894.9	3.0	7864 7855 7848	903.5 902.2 900.8	03.8	7923 7914 7907	909.5 908.1 906.8		7982 7973 7965	915.5 914.1 912.7	05.3
135 134 133	2.533 2.467 2.403		893.6 892.2 11 890.9	0.5	7832	899.5 898.1 896.8	11.4	7899 7890 7883	905.5 904.1 902.7	09.6 12.2 7 14.9	957 949 941	911.4 910.0 908.6	13.0

ahr.	n d		1.56		1.57			1.58		1.59
Temperature, Degrees Fahr.	Pressure, Pounds per Square Inch.	Quality.	Heat Contents. Specific	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Contents. Specific Volume.	Quality.	Heat Contents. Specific Volume.
180 179 178	7.51 7.35 7.19	8380 8372 8364	977.2 42.07 976.0 42.87 974.7 43.75	8445 8437 8429	982.3	42.39 43.20 44.08	8509 8501 8493	990.0 42.72 988.7 43.53 987.4 44.42	8574 8566 8557	996.4 995.1 43.86 993.8
177 176 175	7.03 6.87 6.71	8357 8348 8340	973.4 44.62 972.1 45.50 970.8 46.45	8421 8412 8404	979.8 978.4 977.1	44.97 45.85 46.81	8485 8476 8468	986.1 45.31 984.8 46.19 983.5 47.17	8549 8540 8532	992.5 45.65 991.1 46.54 989.8 47.52
174 173 172	6.56 6.42 6.27	8332 8324 8316	969.5 47.41 968.2 48.36 966.9 49.32	8396 8388 8380	975.8 974.5 973.2	47.77 48.73 49.69	8460 8452 8443	982.1 48.14 980.8 49.10 979.5 50.1	8524 8515 8507	988.5 48.50 987.2 49.47 985.8 50.4
171 170 169	6.13 5.99 5.85	8308 8300 8291	965.5 50.3 964.2 51.5 962.9 52.6	8371 8363 8355	971.8 970.5 969.2	50.7 51.8 53.0	8434 8426 8418	978.1 51.1 976.8 52.2 975.5 53.4	8498 8489 8481	984.4 51.5 983.1 52.6 981.8 53.8
168 167 166	5.72 5.59 5.46	8284 8275 8267	961.6 53.7 960.3 54.8 959.0 56.0	8347 8338 8330	967.9 966.6 965.2	55.2	8410 8401 8393	974.2 54.5 972.8 55.6 971.5 56.8	8473 8464 8455	980.4 54.9 979.1 56.0 977.7 57.2
165 164 163	5.33 5.21 5.09	8259 8251 8243	957.7 57.1 956.3 58.3 955.0 59.4	8322 8314 8306	963.9 962.6 961.2	58.7	8385 8376 8368	970.1 57.9 968.8 59.1 967.5 60.3	8447 8439 8430	976.4 58.4 975.0 59.6 973.7 60.8
162 161 160	4.969 4.852 4.738	8235 8227 8219	953.7 60.7 952.4 62.0 951.1 63.5	8297 8289 8281	959.9 958.6 957.3		8359 8351 8343	966.1 61.6 964.8 63.0 963.5 64.4	8421 8413 8405	972.3 62.1 971.0 63.4 969.7 64.9
159 158 157	4.626 4.517 4.409	8211 8203 8195	949.7 64.8 948.4 66.2 947.1 67.7	8273 8265 8257	955.9 954.6 953.3	66.7	8335 8326 8318	962.1 65.8 960.7 67.2 959.4 68.7	8396 8388 8380	968.3 66.2 966.9 67.7 965.6 69.2
156 155 154	4.303 4.200 4.099	8187 8179 8170	945.8 69.2 944.4 70.7 943.0 72.2	8248 8240 8231	951.9 950.5 949.2	71.2	8310 8301 8293	958.1 70.2 956.7 71.7 955.3 73.3	8371 8362 8354	964.2 70.7 962.8 72.3 961.5 73.8
153 152 151	4.000 3.903 3.808		941.7 73.8 940.4 75.4 939.0 77.1	8224 8215 8206	947.9 946.5 945.1	76.0	8284 8276 8267	954.0 74.9 952.6 76.5 951.2 78.3	8345 8336 8328	960.1 75.4 958.7 77.1 957.3 78.9
150 149 148	3.624	8130	937.7 78.9 936.3 80.6 935.0 82.5	8199 8190 8182	943.8 942.4 941.1	79.4 81.2 83.1	8259 8250 8243	949.9 80.0 948.5 81.8 947.2 83.7	8320 8311 8303	956.0 80.6 954.6 82.4 953.3 84.4
147 146 145	3.361		933.7 932.3 86.3 930.9 88.3	8174 8165 8157	939.7 938.4 937.0	87.0	8234 8225 8217	945.8 85.6 944.4 87.6 943.0 89.6	8294 8285 8276	951.8 950.5 88.2 949.1 90.2
144 143 142	3.196 3.116 3.037	8089 8081 8073	929.6 90.3 928.2 92.4 926.9 94.5	8149 8140 8132	935.7 934.3 932.9	90.9 93.0 95.2	8208 8200 8192	941.7 940.3 938.9 95.9	8268 8259 8251	947.7 92.3 946.3 94.4 944.9 96.6
141 140 139	2.885	8056	925.6 96.7 924.2 98.9 922.8 101.	8124 8115 8107	930.2	97.4 99.7 102.0	8183 8175 8166	937.6 936.1 934.8 102.8		943.6 98.8 942.1 101.1 940.8 103.5
138 137 136	2.740 2.669 2.600	8032	921.5 103. 920.1 106. 918.7 108.	1 8091	926.0	104.4 106.9 109.4	8149	933.4 105.2 932.0 107.7 930.6 110.2	8208	939.4 105.9 938.0 108.4 936.6 111.0
135 134 133	2.533 2.467 2.403	' 8007	917.3 915.9 113. 914.6 116.	9 8066	923.3 921.3 920.3	3 112.1 9 114.7 5 117.5	8133 8124 8116	929.2 112.9 927.8 115.8 926.4 118.3	8192 8182 8174	935.2 113.7 933.7 116.4 932.3 119.2

Pr	apun		1.52			1.53	-		1.54			1.55	
Temperature, Degrees Fahr.	Pressure, Pounds per Square Inch.	Quality.	Heat Contents.	Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.
132 131 130	2.341 2.280 2.220	7759 7751 77 44	889.5 11 888.2 11 886.9 12	8.7	7817 7809 7802	895.4 894.1 892.8	116.9 119.6 122.6	7875 7867 7860	901.4 900.0 898.7	117.7 120.5 123.5	7933 7925 7917	907.3 905.9 904.6	121.4
129 128 127	2.161 2.103 2.047	7736 7729 7721	885.5 884.2 882.9	4.6 7.7 0.8	7794 7786 7778	891.4 890.1 888.8	125.6 128.6 131.8	7852 7844 7836	897.3 895.9 894.6	129.6	7909 7901 7893	903.2 901.8 900.5	127.4 130.5 133.7
126 125 124	1.992 1.938 1.886	7713 7705 7698	881.5 880.2 878.8	4.1 7.4 0.8	7770 7763 7755	887.4 886.1 884.6		7828 7820 7812	893.2 891.9 890.5	136.0 139.4 142.9	7885 7877 7869	899.1 897.8 896.3	140.4
123 122 121	1.835 1.785 1.737	7690 7682 7675	877.5 14 876.1 14 874.8 15	8.0	7747 7739 7732	883.3 881.9 880.6	149.1	7804 7796 7788	889.1 887.7 886.4	146.5 150.2 154.1	7861 7853 7845	895.0 893.5 892.2	151.3
120 119 118	1.689 1.642 1.597	7667 7659 7652	873.4 15 872.1 15 870.7 16	9.6	7724 7716 7708	879.2 877.9 876.5	156.8 160.8 164.9	7780 7772 7764	885.0 883.7 882.3	157.9 162.0 166.2	7837 7828 7821	890.8 889.4 888.0	163.1
117 116 115	1.552 1.509 1.467	7644 7636 7628	869.3 16 867.9 17 866.6 17	2.3	7700 7692 7684	875.1 873.7 872.4	169.2 173.6 178.1	7756 7748 7740	880.9 879.4 878.1	174.9	7812 7804 7796	886.6 885.2 883.8	171.7 176.1 180.7
114 113 112	1.426 1.386 1.347	7620 7612 7605	865.2 18 863.9 18 862.5 19	6.0	7676 7668 7660	871.0 869.6 868.2	182.7 187.4 192.3	7732 7724 7716	876.7 875.3 873.9	184.0 188.8 193.7	7788 7779 7771	882.4 881.0 879.6	190.1
111 110 109	1.308 1.271 1.235	7597 7589 7581	861.2 19 859.8 20 858.4 20	1.3	7652 7644 7636	866.8 865.4 864.1	202.7	7707 7699 7691	872.5 871.1 869.7	198.8 204.2 209.7	7763 7755 77 4 6	878.2 876.8 875.4	205.7
108 107 106	1.200 1.165 1.131	7573 7565 7558	857.0 21 855.6 21 854.2 22	8.0	7629 7620 7612	862.7 861.3 859.9	213.7 219.6 225.6	7684 7675 7667	868.3 866.9 865.5	215.3 221.2 227.3	7739 7730 7722	874.0 872.6 871.2	222.8
105 104 103	1.098 1.066 1.035	7550 7542 7534	852.8 23 851.4 23 850.1 24	6.4	7605 7596 7589	858:5 857.1 855.7	231.8 238.1 244.7	7659 7651 7643	864.1 862.7 861.3	239.9	7714 7705 7697	869.8 868.3 866.9	235.1 241.5 248.2
102 101 100	1.005 0.975 0.946	7526 7519 7511	848.7 24 847.3 25 845.9 26	6.5	7581 7573 7565	852.9	251.4 258.3 265.4	7635 7627 7619	859.9 858.5 857.1	253.2 260.2 267.3	7689 7681 7673	865.5 864.1 862.7	262.0
99 98 97	0.918 0.891 0.864	7503 7495 7 4 87	844.5 843.1 841.8 28	8.3	7557 7549 7541	850.1 848.7 847.4	280.3	7611 7603 7595	855.7 854.2 852.9	282.3	7665 7656 7648	861.3 859.8 858.5	284 3
96 95 94	0.838 0.813 0.788	7480 7472 7464	840.4 29 839.0 30 837.6 31	2.5	7533 7525 7517	844.6	296.3 304.6 313.2	7587 7579 7571	851.5 850.1 848.7	306.8	7640 7632 7624	857.1 855.7 854.2	300.5 308.9 317.7
93 92 91	0.764 0.741 0.718	7456 7448 7440	836.2 31 834.8 32 833.4 33	9.2	7509 7501 7493	841.7 840.3 838.9	322.2 331.6 341.2	7563 7554 7546	847.3 845.8 844.4	333.9		852.8 851.3 849.9	
90 89 88	0.675	7433 7425 7417	832.0 34 830.6 35 829.1 36	8.9	7485 7477 7469	836.1	351.2 361.5 372.0	7538 7530 7522	843.0 841.6 840.1	364.0	7591 7583 7574	847.0	356.2 366.5 377.2
87 86 85	0.633 0.613 0.594	7409 7401 7393	827.7 38 826.3 39 824.9 40	0.1 0.8 2.2	7462 7454 7446	831.8	382.8 393.5 405.0	7514 7506 7498	838.7 837.2 835.8	385.5 396.3 407.9	7567 7558 7550	844.1 842.7 841.2	388.2 399.1 410.7

e,	, Pounds		1.56		1.57			1.58			1.59	
Temperature, Degrees Fahr.	Pressure, Poper Squar Inch.	Quality.	Heat Contents.	Volume. Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Contents.	Volume.	Quality.	Heat Con- tents.	Specific Volume.
132 131 130	2.341 2.280 2.220	7991 7983 7975	913.2 119 911.8 122 910.4 125	.3 8041	917.7	120.3 123.2 126.2	8108 8099 8091	925.0 923.6 922.2	21.2 24.1 27.1	8166 8157 8149	930.9 929.5 928.1	122.1 125.0 128.0
129 128 127	2.161 2.103 2.047	7967 7959 7951	909.1 128 907.7 131 906.3 134	.3 8025 .5 8017 .7 8008	913.6	129.3 132.4 135.7	8083 807 4 8066	920.8 919.4 918.0	33.4	8140 8132 8123	926.7 925.3 923.9	131.1 134.3 137.6
126 125 124	1.992 1.938 1.886	7942 7934 7926	904.9 138 903.6 141 902.1 148	.5 7991	909.4	139.0 142.5 146.0	8057 8049 8040	916.6 915.3 913.8	43.5	8115 8106 8097	922.5 921.1 919.6	141.0 144.5 148.1
123 122 121	1.835 1.785 1.737	7918 7910 7902	900.8 148 899.3 152 898.0 156	.4 796 6	905.1	149.7 153.5 157.4	8032 8023 8015	912.5 911.0 909.6	54.6	8088 8080 8072	918.3 916.8 915.4	155.7
120 119 118	1.689 1.642 1.597	7893 7885 7877	896.6 895.2 893.8 168	.3 7941	901.0	161.4 165.5 169.8	8007 7998 7990	908.2 906.8 905.4	62.5 66.7 71.0	8063 8054 8046	914.0 912.6 911.1	163.7 167.8 172.2
117 116 115	1.552 1.509 1.467	7869 7860 7852	892.4 890.9 173 889.6	'.4 7916	896.7	174.2 178.7 183.3	7981 7972 7964	903.9 902.4 901.0	79.9	8037 8028 8020	909.7 908.2 906.8	176.7 181.2 185.9
114 113 112	1.426 1.386 1.347	7843 7835 7827	888.2 186 886.8 193 885.4 196	7899 7891 7882	892.5	188.0 192.8 197.9	7955 7946 7938	899.6 898.2 896.8	89.3 94.2 99.3	8011 8002 7993	905.4 904.0 902.5	190.7 195.6 200.7
111 110 109	1.308 1.271 1.235	7818 7810 7801	884.0 201 882.5 201 881.1 211	'.1 786 6	888.2	203.1 208.6 214.2	7929 7921 7912	895.4 893.9 892.5	04.6 10.1 15.7	7984 7976 7967	899.6	206.0 211.5 217.2
108 107 106	1.200 1.165 1.131	779 4 7785 7777	879.7 218 878.3 226 876.8 236	7849 1.4 7840 1.5 7831	884.0	219.9 225.9 232.1	7904 7895 7886	891.0 889.6 888.1	27.5	7959 7950 7941	1895.3	223.0 229.1 235.4
105 104 103	1.098 1.066 1.035	7769 7760 7752	875.4 874.0 872.6 249	.3 7814	∮ 879.6	238.4 245.0 251.7	7878 7869 7861	886.7 885.2 883.8	46.7	7933 7923 7915		241.8 248.4 255.2
102 101 100	1.005 0.975 0.946	7744 7735 7727	871.1 256 869.7 263 868.3 271	7798 7790 7781	875.3	258.6 265.7 272.9	7852 7844 7835	882.4 880.9 879.4	80.4 87.5 74.8	7906 7898 7889	888.0 886.5 885.0	262.2 269.4 276.7
99 98 97	0.918 0.891 0.864	7718 7710 7702	866.9 278 865.4 286 864.0 294	.3 7764	872.4 871.0 869.6	280.5 288.3 296.3	7826 7818 7809	878:0 28 876.5 29 875.1 29	32.5 90.3 98.4	7880 7872 7863	883.6 882.1 880.7	284.4 292.3 300.4
96 95 94	0.838 0.813 0.788	7694 7685 7677	862.6 302 861.2 311 859.7 319	. 1 7739	868.2 866.8 865.3	304.7 313.3 322.1	7801 7792 7784	873.730 872.331 870.832	06.8 15.4 24.3	7854 7846 7837	879.3 877.9 876.4	317.6
93 92 91	0.764 0.741 0.718	7669 7660 7652	858.3 856.9 855.4 855.4	. 6 7713		331.4 340.9 350.9		869.433 867.934 866.435	13.3	7828 7819 7811	874.9 873.4 871.9	345.6
90 89 88	0.696 0.675 0.654	7644 7635 7627	853.9 358 852.5 369 851.0 379	.1 7688	858.0	361.1 371.6 382.4	7749 7741 7732	864.936 863.537 862.038	74.2	7802 7793 7785	870.4 868.9 867.4	376.7
87 86 85	0.633 0.613 0.594	7619 7610 7602	849.5 848.1 846.7 413	.8 7663	853.6	393.5 404.6 416.4	7724 7715 7706	860.5 39 859.0 40 857.5 41	06.2 07.4 19.2	7776 7767 7759	866.0 864.5 863.0	398.9 410.1 422.1

ahr.	ounds		1.60			1.61			1.62			1.63	
Temperatures, Degrees Fahr.	Pressure, Pounds per Square Inch.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tenta.	Specific Volume.
420 419 418	308.5 305.1 301.8	138.3 136.6 135.0	1287.8 1286.7 1285.6	1.881 1.895 1.912	158.4 156.7 155.0	1298.3 1297.1 1295.9	1.931 1.946 1.963	178.0	1309.0 1307.8 1306.7	2.000	201.4 199.5 197.7	1320.0 1318.7 1317.5	2.031 2.048 2.065
417 416 415	298.5 295.2 292.0	133.4 131.9 130.3	1284.5 1283.4 1282.3	1.927 1.944 1.959	151.8	1294.7 1293.6 1292.5	1.996	174.5 172.7 171.0	1305.5 1304.3 1303.1	2.033 2.050 2.066	195.9 194.0 192.2	1316.2 1315.0 1313.7	2.082 2.099 2.116
414 413 412	288.9 285.7 282.5	128.7 127.1 125.5	1281.2 1280.1 1279.0	1.975 1.991 2.008	146.7	1291.3 1290.2 1289.0	2.047	169.2 167.5 165.8	1301.9 1300.7 1299.6	2.084 2.100 2.118	188.6	1312.5 1311.3 1310.2	2.150
411 410 409	279.4 276.3 273.3	122.3	1277.9 1276.7 1275.5	2.043	141.7	1287.9 1286.7 1285.6	[2.098]	164.0 162.2 160.5	1298.4 1297.2 1296.0	2.135 2.154 2.172	184.9 183.0 181.2	1308.9 1307.7 1306.5	2.187 2.205 2.224
408 407 406	270.3 267.3 264.3	119.2 117.7 116.1	1274.4 1273.3 1272.2	2.077 2.095 2.112	136.8	1284.5 1283.3 1282.1	2.152	157.0	1294.8 1293.6 1292.4	2.208	179.4 177.6 175.7	1305.3 1304.0 1302.8	2.243 2.261 2.280
405 404 403	261.3 258.4 255.5	112.9	1271.1 1270.0 1268.9	2.148	131.8	1281.0 1279.9 1278.7	2.206	151.8	1291.3 1290.1 1288.9	2.263	172.2	1301.6 1300.4 1299.1	2.318
402 401 400	252.6 249.7 246.9	109.7 108.2 106.7	1267.8 1266.7 1265.6	2.185 2.203 2.223	126.9	1277.6 1276.4 1275.3	2.261	146.6	1287.8 1286.6 1285.4	2.321	166.8	1297.9 1296.7 1295.5	2.377
399 398 397	244.1 241.4 238.6	105.2 103.6 102.0	1264.4 1263.3 1262.2	2.241 2.260 2.279	123.6 122.0 120.4	1274.2 1273.1 1271.9	2.301 2.320 2.340	141.4	1284.2 1283.0 1281.8	2.380	161.3	1294.3 1293.1 1291.9	2.438
396 395 394	235.9 233.2 230.5	100.5 99.0 97.5	1261.1 1260.1 1259.0	2.300 2.320 2.340	118.6 117.0 115.4	1270.7 1269.6 1268.4	2.360 2.380 2.400	137.9 136.1 134.5	1280.7 1279.4 1278.3	2.420 2.440 2.461	155.9	1290.7 1289.6 1288.4	2.500
393 392 391	227.9 225.2 222.6	95.9 94.4 92.8	1257.9 1256.8 1255.6	2.361 2.382 2.403	113.8 112.2 110.5	1267.3 1266.1 1265.0	2.421 2.441 2.462	131.1	1277.1 1276.0 1274.8	2.504	150.6	1287.2 1286.0 1284.8	2.565
390 389 388	220.1 217.5 215.0	91.3 89.8 88.2	1254.5 1253.4 1252.3	2.424 2.444 2.466	108.9 107.3 105.7	1263.9 1262.8 1261.6	2.483 2.505 2.527	127.7 126.0 124.3	1273.6 1272.5 1271.3	2.546 2.569 2.591	147.0 145.2 143.4	1283.6 1282.4 1281.2	2.610 2.632 2.654
387 386 385	212.5 210.0 207.5	86.6 85.0 83.5	1251.2 1250.0 1248.9	2.488 2.510 2.532	104.1 102.4 100.8	1260.4 1259.2 1258.1	2.549 2.571 2.594	122.5 120.9 119.1	1270.1 1268.9 1267.7	2.613 2.636 2.660	141.6 139.9 138.1	1280.0 1278.8 1277.6	2.677 2.701 2.725
384 383 382	205.1 202.6 200.3	81.9 80.4 78.9	1247.8 1246.6 1245.4	2.554 2.577 2.600	99.2 97.6 95.9	1257.0 1255.8 1254.6	2.617 2.640 2.664	117.5 115.7 114.0	1266.5 1265.4 1264.2	2.684 2.707 2.730	136.3 134.5 132.6	1276.3 1275.0 1273.8	2.750 2.773 2.799
381 380 379	197.9 195.5 193.2	77.4 75.8 74.3	1244.3 1243.2 1242.1	2.623 2.646 2.671	94.3 92.6 91.0	1253.4 1252.3 1251.1	2.688 2.713 2.737	112.3 110.7 109).0	1263.0 1261.8 1260.6	2.755 2.780 2.805	130.9 129.1 127.3	1272.6 1271.4 1270.2	2.823 2.849 2.873
378 377 376	190.9 188.6 186.3	72.7 71.2 69.7	1241.0 1239.9 1238.7	2.696 2.720 2.745	89.4 87.8 86.1	1249.9 1248.7 1247.5	2.761 2.787 2.813	107.3 105.7 104.0	1259.5 1258.4 1257.2	2.830 2.856 2.883	122.0	1268.9 1267.7 1266.5	2.952
375 374 373	184.1 181.9 179.7	68.1 66.6 65.0	1237.5 1236.3 1235.2	2.770 2.795 2.821	84.5 83.0 81.4	1246.4 1245.3 1244.2	2.839 2.864 2.891	102.3 100.7 99.0	1256.0 1254.8 1253.6	2.909 2.935 2.962	120.1 118.4 116.7	1265.3 1264.1 1262.9	2.979 3.005 3.033

ahr.	e e e		1.64			1.65			1.66			1.67	
Temperature, Degrees Fahr.	Pressure, Pounds per Square Inch.	Quality.	Heat Contents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.
420 419 418	308.5 305.1 301.8	221.7	1331.12 1329.92 1328.62	. 103	243.2	1341.7 1340.4 1339.2	2.157	265.4	1353.3 1352.0 1350.6	2.210	287.7	1364.4 1363.1 1361.8	2.261
417 416 415	298.5 295.2 292.0	216.0	1327.3 1326.0 1324.7	. 156	237.5	1337.9 1336.7 1335.5	2.210	261.4 259.4 257.4	1349.2 1347.8 1346.6	2.246 2.264 2.282	281.9	1360.5 1359.2 1357.9	2.318
414 413 412	288.9 285.7 282.5	210.3	1323.5 1322.3 1321.0	. 209	231.7	1334.2 1333.0 1331.7	2.263	253 .5	1345.3 1344.0 1342.6	2.319	275.9	1356.6 1355.3 1354.0	2.375
411 410 409	279.4 276.3 273.3	204.6	1319.8 1318.5 1317.3	. 263	226.0	1330.5 1329.2 1327.9	2.320	249.5 247.5 245.6	1341.3 1340.1 1338.8	2.356 2.376 2.395	269.9	1352.7 1351.4 1350.0	2.433
408 407 406	270.3 267.3 264.3	200.8 198.9 197.0	1316.1 1314.8 1313.6	. 301 . 320 . 339	220.1	1326.7 1325.4 1324.2	2.377	243.7 241.8 239.9	1337.5 1336.3 1335.0	2.414 2.434 2.455	263.9	1348.7 1347.4 1346.1	2.494
405 404 403	261.3 258.4 255.5	193.2	1312.3 1311.0 1309.8	. 378	214.4	1322.9 1321.6 1320.3	2.435	235.9	1333.7 1332.4 1331.1	2.495	257.9	1344.8 1343.4 1342.1	2.556
402 401 400	252.6 249.7 246.9	187.6	1308.5 1307.3 1306.0 2	. 437	208.5	1319.0 1317.7 1316.4	2.497	230.0	1329.8 1328.5 1327.2	2.558	251.9	1340.9 1339.6 1338.3	2.620
399 398 397	244.1 241.4 238.6	183.8 182.0 180.1	1304.8 1303.5 1302.3	. 478 . 499 . 520	202.8	1315.1 1313.9 1312.6	2.560	224.0	1325.9 1324.6 1323.3	2.623	246.0	1337.0 1335.7 1334.4	2.687
396 395 394	235.9 233.2 230.5	176.3	1301.0 1299.7 1298.5 2	. 563	197.1	1311.4 1310.1 1308.9	2.625	220.0 218.0 216.0	1321.9 1320.6 1319.3	2.667 2.690 2.713	240.0	1333.1 1331.8 1330.4	2.755
393 392 391	227.9 225.2 222.6	170.8	1297.3 1296.0 1294.8	. 630	191.4	1307.7 1306.5 1305.2	2.694	212.1	1318.0 1316.7 1315.3	2.759	234.0	1329.1 1327.8 1326.5	2.827
390 389 388	220.1 217.5 215.0	167.0 165.2 163.3	1293.6 1292.4 1291.2	.675 .699 .721	185.6	1304.0 1302.7 1301.4	2.764	206.3	1314.1 1312.8 1311.6	2.832	228.0	1325.1 1323.8 1322.5	2.901
387 386 385	212.5 210.0 207.5	159.6	1289.9 1288.6 1287.4	. 7691	179.9	1300.1 1298.8 1297.5	2.839	200.4	1310.3 1309.1 1307.8	2.907	221.9	1321.2 1319.9 1318.5	2.978
384 383 382	205.1 202.6 200.3	154.0	1286.1 1284.9 1283.7	.843	174.1	1296.3 1295.0 1293.7	2.914	194.5	1306.5 1305.2 1303.9	2.984	215.9	1317.2 1315.9 1314.6	3.057
381 380 379		148.5	1282.5 1281.2 1280.0	. 920	168.4	1292.4 1291.1 1289.9	2.994	188.8	1302.6 1301.4 1300.2	3.065	209.8	1313.2 1311.9 1310.5	3.139
378 377 376	190.9 188.6 186.3	143.0	1278.8 2 1277.6 2 1276.4 3	.999	162.7	1288.6 1287.4 1286.1	3.074	183.0	1298.9 1297.6 1296.3	3.148	203.7	1309.2 1307.9 1306.6	3.223
375 374 373	184.1 181.9 179.7	139.4 137.6 135.8	1275.23 1273.93 1272.7	. 053 . 081 . 109	159.0 157.1 155.2	1284.9 1283.6 1282.3	3.130 3.158 3.187	179.1 177.2 175.3	1295.0 1293.7 1292.4	3.204 3.233 3.261	199.7 197.7 195.7	1305.3 1304.0 1302.7	3.311

ahr.	e e e		1.60		1.61			1.62		1.63	
Temperature, Degrees Fahr.	Pressure, Pounds per Square Inch.	Quality.	Heat Contents. Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Contents. Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.
372 371 370	177.5 175.3 173.2	63.6 62.0 60.6	1234.12.848 1233.02.874 1231.92.901	79.8 78.2 76.6	1243.0 1241.8 1240.6	2.919 2.945 2.974	97.3 95.7 94.0	1252.3 2.989 1251.2 3.018 1250.0 3.048	113.2	1261.6 1260.3 1259.1	3.090
369 368 367	171.1 169.0 166.9	59.0 57.5 56 .0	1230.8 2.930 1229.6 2.956 1228.5 2.983	75.0 73.3 71.7	1239.5 1238.3 1237.1	3.000 3.030 3.059	92.3 90.6 88.9	1248.8 3.073 1247.6 3.102 1246.4 3.130	108.0	1257.9 1256.7 1255.5	3.147 3.175 3.205
366 365 364	164.8 162.8 160.8	54.5 53.0 51.4	1227.43.012 1226.23.041 1225.13.070	70.1 68.6 67.0	1235.9 1234.7 1233.6	3.087 3.116 3.145	87.2 85.6 83.9	1245.23.160 1244.03.190 1242.83.220	102.9	1254.3 1253.0 1251.8	3.265
363 362 361	158.8 156.8 154.8	49.9 48.4 46.9	1224.0 3.100 1222.9 3.130 1221.7 3.160	65.4 63.9 62.2	1232.4 1231.3 1230.1	3.205	82.2 80.6 78.9	1241.6 3.250 1240.4 3.280 1239.2 3.312	97.6	1250.6 1249.4 1248.2	3.357
360 359 358	152.9 151.0 149.1	45.4 43.9 42.3	1220.6 3.190 1219.5 3.221 1218.3 3.252	60.6 59.0 57.5	1228.9 1227.7 1226.6	3.267 3.299 3.330	77.2 75.6 74.0	1238.0 3.343 1236.9 3.375 1235.7 3.407	94.3 92.5 90.9	1247.0 1245.7 1244.5	3.421 3.453 3.486
357 356 355	147.2 145.3 143.5	40.9 39.5 37.9	1217.2 3.285 1216.1 3.317 1215.0 3.350	56.0 54.4 52.8	1225.5 1224.3 1223.1	3.395	72.4 70.7 69.0	1234.5 3.440 1233.3 3.474 1232.2 3.507	89.2 87.4 85.8	1243.3 1242.0 1240.8	3.554
354 353 352	141.6 139.8 138.0	36.4 34.9 33.4	1213.9 3.382 1212.8 3.417 1211.7 3.450	51.2 49.6 48.0	1222.0 1220.8 1219.6	3.495	67.4 65.8 64.2	1231.0 3.540 1229.8 3.576 1228.6 3.610	82.4	1239.6 1238.4 1237.3	3.658
351 350 349	136.3 134.5 132.8	31.9 30.4 29.0	1210.6 3.484 1209.4 3.520 1208.3 3.555	46.4 44.9 43.4	1218.4 1217.3 1216.2	3.599	62.6 61.0 59.4	1227.5 3.648 1226.3 3.685 1225.1 3.720	79.1 77.6 75.9	1236.2 1235.0 1233.8	3.766
348 347 346	131.1 129.4 127.7	27.5 26.0 24.5	1207;23.590 1206:13.626 1205:03.663	41.9 40.4 38.9	1215.1 1214.0 1212.8	3.710	57.7 56.1 54.5	1223.9 3.758 1222.7 3.796 1221.5 3.834	72.5	1232.6 1231:4 1230.2	3.881
345 344 343	126.0 124.4 122.7	23.0 21.5 20.0	1203.9 3.700 1202.8 3.738 1201.6 3.776	35.9	1211.6 1210.5 1209.4	3.824	52.9 51.3 49.7	1220.3 3.874 1219.2 3.914 1218.1 3.954	67.6	1229.0 1227.9 1226.7	4.000
342 341 340	121.1 119.5 117.9	18.5 17.0 15.5	1200.5 3.815 1199.3 3.853 1198.2 3.893	31.2	1208.3 1207.1 1206.0	3.943	48.0 46.5 44.9	1216.9 3.995 1215.8 4.036 1214.7 4.079	64.4 62.6 61.0	1225.6 1224.4 1223.2	4.128
339 338 337	116.3 114.8 113.3	14.0 12.5 11.0	1197.1 3.933 1196.0 3.973 1194.8 4.014	28.1 26.5 25.0	1204.8 1203.7 1202.6	4.026 4.067 4.110	43.3 41.7 40.1	1213.5 4.120 1212.4 4.164 1211.2 4.207	57.7	1222.0 1220.8 1219.6	4.260
336 335 334	111.7 110.3 108.8	8.1	1193.7 4.056 1192 5 4.098 1191.4 4.140	21.9	1201.4 1200.2 1199.0	4.194		1210.0 4.250 1208.9 4.294 1207.6 4.339		1218.4 1217.2 1216.0	
333 332 331	107.3 105.8 104.4		1190.3 4.181 1189.2 4.225 1188.1 4.268		1197.9 1196.8 1195.6	4.328	32.2	1206 . 4 4 . 383 1205 . 2 4 . 429 1204 . 1 4 . 473		1214.7 1213.5 1212.4	
330 329 328	103.0 101.6 100.2	9993	1186.9 4.312 1185.7 4.365 1184.5 4.417	12.7	1194.5 1193.4 1192.3	4.461	27.3	1203.0 4.520 1201.8 4.566 1200.6 4.613	42.7	1211.2 1210.0 1208.8	4.680
327 326 325	98.8 97.5 96.1	9974 9964 9954	1183.4 1182.3 1181.2 4.521 1181.2	9.6 8.0 6.5	1191.1 1190.0 1189.0	4.557 4.603 4.650	24.1 22.5 20.9	1199.4 1198.2 1197.0 4.760	39.3 37.7 36.0	1207.6 1206.4 1205.3	4.830

abr.	apuno e		1.64		1.65			1.66	T	1.67	
Temperature, Degrees Fahr	Pressure, Pounds per Square Inch.	Quality.	Heat Contents. Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Contents. Specific	Quality.	Heat Con- tents.	Specific Volume.
372 371 370	177.5 175.3 173.2	132.1	1271.4 3.138 1270.1 3.167 1268.9 3.196	151.4	1281.0 1279.8 1278.5	3.245	171.5	1291.2 3.29 1289.9 3.32 1288.6 3.35	3 191.7	1301.4 1300.1 1298.8	3.400
369 368 367	171.1 169.0 166.9	126.7	1267.73.225 1266.53.254 1265.33.284	145.7	1277.2 1275.9 1274.6	3.335	165.7	1287.43.38 1286.13.41 1284.83.44	5 185.7	1297.5 1296.2 1294.9	3.495
366 365 364	164.8 162.8 160.8	121.3	1264.0 3.314 1262.8 3.344 1261.6 3.376	140.0	1273.3 1272.1 1270.9	3.428	160.0	1283.5 1282.2 1280.9 3.54	1 179.7	1293.6 1292.3 1291.0	3.593
363 362 361	158.8 156.8 154.8	115.9	1260.3 3.408 1259.0 3.440 1257.8 3.472	134.4	1269.6 1268.3 1267.0	3.524	156.0 154.0 152.0	1279.6 3.57 1278.3 3.61 1277.0 3.64	9 175.7 2 173.8 7 171.8	1289.7 1288.4 1287.0	3.695
360 359 358	152.9 151.0 149.1	110.5	1256.6 3.504 1255.3 3.537 1254.1 3.570	128.8	1265.7 1264.5 1263.2	3.624	148.1	1275.7 1274.4 1273.1 3.75	6 167.9	1285.6 1284.3 1283.0	3.801
357 356 355	147.2 145.3 143.5	105.3	1252.9 3.605 1251.7 3.640 1250.5 3.675	123.2	1262.0 1260.7 1259.4	3.730	142.4	1271.8 3.78 1270.5 3.82 1269.2 3.86	2 162.0	1281.7 1280.4 1279.0	3.913
354 353 352	141.6 139.8 138.0	100.1	1249.3 3.713 1248.0 3.749 1246.8 3.787	117.8	1258.2 1257.0 1255.8	3.840	136.9	1268.0 3.89 1266.7 3.93 1265.4 3.97	6 156.0	1277.7 1276.4 1275.0	4.029
351 350 349	136.3 134.5 132.8	94.7	1245.6 3.824 1244.3 3.861 1243.0 3.900	112.4	1254.6 1253.3 1252.0	3.955	131.2	1264.2 4.01 1262.9 4.05 1261.6 4.09	2 150.1	1273.7 1272.4 1271.1	4.149
348 347 346	131.1 129.4 127.7	89.5	1241.8 3.940 1240.6 3.980 1239.3 4.020	107.0	1250.8 1249.6 1248.3	4.075	125.6	1260.3 4.13 1259.0 4.17 1257.8 4.21	2 144.2	1269.8 1268.5 1267.2	4.273
345 344 343	126.0 124.4 122.7	84.1	1238.0 4.062 1236.8 4.104 1235.6 4.148	101.5	1247.0 1245.8 1244.6	4.200	120.0	1256.5 4.25 1255.2 4.29 1253.9 4.34	7 138.4	1265.8 1264.5 1263.2	4.400
342 341 340	121.1 119.5 117.9	79.0	1234.3 4.190 1233.0 4.232 1231.8 4.276	96.1	1243.3 1242.0 1240.8	4.329	114.2	1252.6 4.38 1251.3 4.42 1250.0 4.47	8 132.5	1261.9 1260.6 1259.3	4.533
339 338 337	116.3 114.8 113.3	73.6	1230.6 4.320 1229.3 4.364 1228.0 4.409	90.7	1239.6 1238.3 1237.0	4.461	108.6	1248.8 4.51 1247.5 4.56 1246.3 4.61	4 126.7	1258.0 1256.7 1255.4	4.672
336 335 334	111.7 110.3 108.8	68.4	1226.8 4.455 1225.6 4.500 1224.3 4.548	85.4	1235.8 1234.6 1233.3	4.599	103.0	1245.0 4.65 1243.7 4.70 1242.4 4.75	5 120.9	1254.1 1252.7 1251.4	4.817
333 332 331	107.3 105.8 104.4	63.2	1223.1 4.595 1221.9 4.642 1220.7 4.692	80.2	1232.1 1230.9 1229.7	4.744	97.4	1241.1 1239.8 1238.6 4.85 1238.6	0 115.0	1250.1 1248.7 1247.4	4.967
330 329 328	103.0 101.6 100.2	58.0	1219.4 4.740 1218.2 4.790 1217.0 4.840	76.6 74.9 73.1	1228.4 1227.2 1226.0	4.845 4.895 4.947	93.7 91.9 90.0	1237.3 4.95 1236.0 5.00 1234.7 5.05	3 111.1 109.2 107.3	1246.0 1244.7 1243.4	5.070 5.123 5.180
327 326 325	98.8 97.5 9 6.1	54.6 52.9 51.1	1215.7 4.890 1214.5 4.941 1213.2 4.994	71.4 69.5 67.7	1224.7 1223.5 1222.2	4.998 5.050 5.105	88.1 86.3 84.5	1233.45.10 1232.15.16 1230.75.21	105.4 103.5 101.7	1242.1 1240.8 1239.5	5.233 5.290 5.345

	· ·	· · · · · · · · · · · · · · · · · · ·									
abr.	, Pounds juare		1.60		1.61			1.62		1.63	
Temperature, Degrees Fahr.	Pressure, Poper Squar	Quality.	Heat Contents. Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Contents. Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.
324 323 322	94.8 93.5 92.2	9943 9934 9924	1180.0 4.626 1178.9 4.683 1177.8 4.741	5.0 3.5 1.9	1187.9 1186.7 1185.5	4.700 4.747 4.797	19.3 17.7 16.1	1195.8 4.810 1194.7 4.860 1193.5 4.910	32.7	1204.0 1202.8 1201.6	4.987
321 320 319	90.9 89.6 88.3	9914 9905 9895	1176.6 4.799 1175.6 4.860 1174.4 4.922	0.3 9992 9982	1184.4 1183.3 1182.1	4.903	14.4 12.9 11.3	1192.3 4.965 1191.2 5.018 1190.1 5.073	27.7	1200.4 1199.2 1198.0	5.146
318 317 316	87.1 85.9 84.6	9885 9875 9865	1173.3 4.985 1172.1 5.048 1170.9 5.112	9972 9962 9952	1181.0 1179.8 1178.6	5.092	9.7 8.1 6.5	1188.9 5.128 1187.7 5.182 1186.5 5.239	22.7	1196.9 1195.7 1194.5	5.314
315 314 313	83.4 82.3 81.1	9856 9846 9836	1169.8 5.178 1168.7 5.244 1167.6 5.311	9942 9932 9922	1177.5 1176.4 1175.3	5.290	4.9 3.3 1.6	1185.3 5.296 1184.2 5.351 1183.0 5.410	19.3 17.6 16.0	1193.4 1192.2 1191.0	5.487
312 311 310	79.9 78.8 77.6	9827 9817 9808	1166.4 5.378 1165.3 5.445 1164.1 5.514	9913 9903 9893	1174.1 1173.0 1171.8	5.492	9999 9989 9978	1181.8 5.471 1180.6 5.540 1179.4 5.610		1189.8 1188.6 1187.4	665
309 308 307	76.5 75.4 74.3	9798 9789 9779	1163.0 5.584 1161.8 5.656 1160.6 5.729	9883 9874 9864	1170.6 1169.5 1168.3	5.705	9968 9959 9948	1178.3 5.681 1177.1 5.754 1175.9 5.829	7.6	1186.2 1184.9 1183.6	5.850
306 305 304	73.2 72.2 71.1	9770 9760 9750	1159.5 5.804 1158.3 5.879 11 57 .1 5.956	9834	1167.2 1165.9 1164.8	5.930 6.008	9939 9929 9918	1174.8 5.905 1173.6 5.981 1172.4 6.059	2.2 0.4	1182.4 1181.2 1180.0	5.047 5.110
303 302 301	70.0 69.0 68.0	9741 9731 9722	1156.0 6.034 1154.9 6.113 1153.7 6.194	9825 9815 9806	1163.7 1162.5 1161.3	6.166	9909 9899 9889	1171.3 6.139 1170.1 6.218 1168.9 6.300	9983	1178.96 1177.76 1176.5	3.271
300 299 298	67.0 66.0 65.0	9712 9703 9693	1152.5 6.276 1151.4 6.359 1150.2 6.443	9795 9786 9776	1160.1 1159.0 1157.8	6.414	9879 9870 9859	1167.7 6.384 1166.6 6.469 1165.4 6.554	9953	1175.3 1174.1 1172.9	5.523
297 296 295	64.0 63.1 62.1	9684 9674 9665	1149.0 6.530 1147.8 6.617 1146.7 6.706		1156.6 1155.4 1154.3	6.673	9850 9840 9830	1164.2 6.641 1162.9 6.729 1161.8 6.819	9923 9913	1171.7 1170.5 1169.3	. 786 . 877
294 293 292	61.2 60.2 59.3	9655 9646 9637	1145.5 6.795 1144.4 6.887 1143.2 6.980	9737 9728 9719	1153.1 1151.9 1150.7	6.945	9820 9811 9801	1160.6 6.910 1159.4 7.004 1158.2 7.098	9893 9883	1168.16 1166.97 1165.77	'. 063 I
291 290 289	58.4 57.5 56.7	9609	1142.0 7.075 1140.9 7.169 1139.7 7.268	9700 9690	1149.6 1148.4 1147.2	7.229 7.329	9782 9772	1157.1 7.194 1155.9 7.290 1154.7 7.390	9863 9854	1164.57 1163.37 1162.17	. 351 . 452
288 287 286	55.8 54.9 54.1	9599 9590 9581	1138.5 7.367 1137.3 7.469 1136.2 7.572	9662	1146.0 1144.8 1143.6	7.637	9743	1153.5 7.491 1152.3 7.595 1151.1 7.700	9824	1160.97 1159.77 1158.57	.764
285 284 283	53.2 52.4 51.6	9562	1135.0 7.678 1133.8 7.784 1132.6 7.892	9642	1142.4 1141.2 1140.0	7.850	9723 9714	1149.9 7.807 1148.6 7.915 1147.4 8.024	9804	1157.37 1156.17 1154.98	.980
282 281 280	50.8 50.0 49.19	9534	1131.4 8.003 1130.3 8.116 1129.1 8.230	9614 9605	1138.8 1137.6 113 6 .5	8.184 8.299	9695 9685	1146.2 8.137 1145.1 8.251 1143.9 8.368	9775 9765	1153.78 1152.58 1151.38	. 319
279 278 277	48.41 47.64 46.88	9506	1127.9 8.344 1126.6 8.461 1125.4 8.580	9595 9586 9576	1135.2 1134.0 1132.8	8.414 8.532 8.651	9675 9665 965 6	1142.6 8.484 1141.4 8.603 1140.2 8.723	9755 9745 9736	1150.0 1148.7 1147.5 8	. 673

e,	Pounds uare		1.64		1.65		1.66			1.67	
Temperature, Degrees Fahr.	Pressure, Poun per Square Inch.	Quality.	Heat Contents. Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality. Heat Contents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.
324 323 322	94.8 93.5 92.2	49.4 47.8 46.0	1212.0 5.048 1210.8 5.100 1209.6 5.155	66.0 64.2 62.4	1220.9 1219.6 1218.3	5.216	82.6 1229. 80.8 1228. 78.9 1226.	5 . 273 2 5 . 330 5 . 389	99.9 98.0 96.1	1238.3 1237.0 1235.7	5.400 5.459 5.518
321 320 319	90.9 89.6 88.3	44.3 42.6 40.9	1208.4 5.210 1207.2 5.265 1206.0 5.322	60.6 58.8 57.0	1217.1 1215.9 1214.6	5.327 5.384 5.440	77.0 1225. 75.1 1224. 73.3 1223.	5.446 5.506 5.565	94.2 92.4 90.5	1234.4 1233.1 1231.8	5.635
318 317 316	87.1 85.9 84.6	39.1 37.5 35.7	1204.8 5.380 1203.6 5.435 1202.4 5.495	55.1 53.3 51.5	1213.3 1212.0 1210.8	5.500 5.560 5.623	69.6 1220.	5.625 5.685 5.750	88.7 86.8 84.9	1230.5 1229.2 1227.9	5.759 5.820 5.885
315 314 313	83.4 82.3 81.1	34.0 32.3 30.5	1201.2 5.554 1200.0 5.614 1198.8 5.673	49.8 48.0 46.2	1209.6 1208.3 1207.1	5.685 5.745 5.810	66.0 1217. 64.1 1216. 62.3 1215.	5.813 5.875 2.5.940	83.0 81.1 79.2	1226.6 1225.3 1224.0	6.02
312 311 310	79.9 78.8 77.6	28.8 27.0 25.4	1197.6 5.734 1196.4 5.798 1195.2 5.863	44.4 42.7 40.9	1205.9 1204.7 1203.5	5.873 5.937 6.00	60.4 1214. 58.6 1212. 56.8 1211.	6.00 6.07 6.14	77.3 75.4 73.4	1222.7 1221.4 1220.1	6.23
309 308 307	76.5 75.4 74.3	23.7 21.9 20.1	1193.9 5.928 1192.7 5.990 1191.5 6.06	39.1 37.3 35.5	1202.2 1200.9 1199.7	6.07 6.14 6.21	55.0 1210. 53.1 1209. 51.3 1207.	0 6.27	71.5 69.6 67.7	1218.7 1217.4 1216.1	6.44
306 305 304	73.2 72.2 71.1	18.5 16.8 15.0	1190.3 6.12 1189.1 6.19 1187.9 6.26	33.8 32.0 30.1	1198.5 1197.3 1196.0	6.27 6.34 6.41	49.4 1206. 47.5 1205. 45.7 1203.	26.48	65.8 63.9 62.0	1214.8 1213.5 1212.2	6.65
303 302 301	70.0 69.0 68.0	13.3 11.6 9.9	1186.7 6.33 1185.5 6.40 1184.3 6.48	28.3 26.5 24.8	1194.7 1193.4 1192.2	6.56	43.9 42.0 1201. 40.1 1200.	3 6.70	60.1 58.2 56.3	1210.9 1209.6 1208.3	6.88
300 299 298	67.0 66.0 65.0	8.1 6.4 4.7	1183.1 6.56 1181.9 6.64 1180.7 6.71	23.0 21.2 19.4	1191.0 1189.8 1188.5	6.71 6.79 6.87	38.3 1198. 36.4 1197. 34.5 1196.	4 6.94	54.4 52.5 50.5	1207.0 1205.7 1204.4	7.04 7.12 7.20
297 296 2 9 5	64.0 63.1 62.1	2.9 1.2 9996	1179.4 6.78 1178.1 6.86 1176.8 6.934	15.8	1187.2 1185.9 1184.6	7.02	32.6 1194. 30.8 1193. 29.0 1192.		48.6 46.7 44.8	1203.1 1201.8 1200.5	7.37
294 293 292	61.2 60.2 59.3	9985 9975 9965	1175.6 7.026 1174.4 7.121 1173.2 7.217	12.2 10.4 8.6	1183.4 1182.2 1181.0	7.18 7.27 7.35	27.1 1191. 25.3 1189. 23.4 1188.	7 7 . 43	42.9 41.0 39.0	1199.2 1197.9 1196.6	7.53 7.62 7.70
291 290 289	58.4 57.5 56.7	9956 9945 9935	1172.0 7.314 1170.8 7.412 1169.5 7.514	6.8 5.0 3.2	1179.7 1178.5 1177.2	7.44 7.52 7.61	21.5 19.7 17.9 1185. 1184.	9 7.69	37.0 35.0 33.1	1195.3 1194.0 1192.7	7.89
288 287 286	55.8 54.9 54.1	9925 9915 9905	1168.3 7.616 1167.1 7.722 1166.0 7.828	9996	1176.0 1174.6 1173.4	7.785	14.1 1182.	7.88 27.97 98.06	31.2 29.3 27.4	1191.4 1190.1 1188.8	8.17
285 284 283	53.2 52.4 51.6	9885	1164.77.937 1163.48.046 1162.28.158	9965	1172.1 1170.8 1169.6	8.112	8.5 1178.	5 8.25	25.5 23.6 21.7	1187.5 1186.2 1184.9	8.45
282 281 280	50.8 50.0 49.19	9865 9855 9845	1161.18.272 1159.98.388 1158.78.505	9945 9935 9925	1168.5 1167.3 1166.1	8.339 8.456 8.575	4.9 1176. 3.0 1174. 1.1 1173.	0 8.45 7 8.55 4 8.65	19.8 17.9 16.0	1183.6 1182.3 1181.0	8.76
279 278 277			1157.48.623 1156.18.744 1154.98.866	9905	1164.8 1163.5 1162.3	8.815	9984 1170.	2 8.763 9 8.886 7 9.010	12.1	1179.7 1178.4 1177.1	9.07

hr.	Pounds lare		1.60		1.61			1.62		1.63	-,
Temperature, Degrees Fahr.	Pressure, Pour per Square Inch.	Quality.	Heat Contents. Specific	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Contents. Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.
276 275 274	46.13 45.39 44.67	9488 9479 9470	1124.3 8.701 1123.1 8.825 1121.9 8.953	9567 9558 9549	1131.7 1130.5 1129.2	8.899	9647 9637 9628	1139.0 8.846 1137.8 8.972 1136.5 9.102	9716	1146.4 1145.2 1143.9	9.045
273 272 271	43.95 43.24 42.54	9461 9451 9442	1120.7 9.082 1119.5 9.215 1118.3 9.350	9539 9530 9521	1128.0 1126.8 11 25 .6	9.292	9618 9609 9599	1135.3 9.234 1134.1 9.369 1132.9 9.505	9697 9687 9678	1142.7 1141.5 1140.2	9.445
270 269 268	41.84 41.16 40.49	9433 9424 9414	1117.1 9.481 1115.9 9.623 1114.7 9.763	9511 9502 9492	1124.3 1123.2 1122.0	9.703	9590 9580 9570	1131.69.639 1130.49.782 1129.29.925		1138.9 1137.7 1136.5	9.862
267 266 265	39.83 39.17 38.53	9406 9395 9387	1113.5 9.905 1112.2 10.05 1111.0 10.20	9483 9473 9465	1120.8 1119.5 1118.3	10.14	9561 9551 9542	1128.0 10.07 1126.7 10.22 1125.5 10.37	9639 9629 9620	1135.3 1134.0 1132.8	10.30
264 263 262	37.89 37.26 36.64	9378 9369 9360	1109.8 10.35 1108.6 10.50 1107.4 10.66	9456 9446 9437	1117.0 1115.8 1114.6	10.59	9533 9523 9514	1124.3 10.52 1123.1 10.68 1121.8 10.84	9601	1131.5 1130.3 1129.1	10.76
261 260 259	36.02 35.42 34.83	9351 9341 9332	1106.2 10.82 1105.0 10.98 1103.8 11.14	9428 9418 9409	1113.4 1112.2 1110.9	11.07	9504 9495 9485	1120.6 11.00 1119.4 11.16 1118.1 11.33	9581 9572 9562	1127.9 1126.6 1125.3	11.25
258 257 256	34.24 33.66 33.09	9323 9315 9305	1102.5 11.31 1101.3 11.48 1100.1 11.66	9399 9391 9381	1109.6 1108.5 1107.3	11.58	9476 9467 9458	1116.8 11.49 1115.6 11.67 1114.4 11.85	9552 9543 9534	1124.0 1122.8 1121.6	11.77
255 254 253	32.53 31.97 31.42	9296 9287 9278	1098.8 11.83 1097.6 12.02 1096.4 12.21	9372 9363 9353	1106.0 1104.7 1103.5	12.12	9448 9438 9429	1113.1 12.03 1111.8 12.21 1110.6 12.41	9524 9514 9505	1120.3 1119.0 1117.8	12.31
252 251 250	30.88 30.35 29.82	9269 9260 9251	1095.2 12.39 1094.0 12.58 1092.7 12.78	9345 9335 9326	1102.3 1101.1 1099.8	12.69	9420 9410 9401	1109.4 12.60 1108.2 12.79 1106.9 12.99	9495 9486 9476	1116.5 1115.3 1114.0	12.89
249 248 247	29.30 28.79 28.29	9242 9233 9225	1091.5 12.99 1090.2 13.18 1089.0 13.39	9317 9308 9299	1098.6 1097.3 1096.1	13.29	9392 9383 9374	1105.6 13.20 1104.3 13.40 1103.1 13.61	9467 9457 9448	1112.7 1111.4 1110.2	13.51
246 245 244	27.80 27.31 26.83	9215 9206 9198	1087.8 13.61 1086.6 13.82 1085.3 14.04	9290 9280 9272	1094.8 1093.6 1092.4	13.72 13.93 14.15	9364 9355 9346	1101.9 13.83 1100.7 14.04 1099.4 14.26	9439 9429 9420	1108.9 1107.7 1106.4	14.15
243 242 241	26.35 25.88 25.42	9188 9180 9171	1084.1 14.25 1082.9 14.48 1081.6 14.71	9262 9254 9244	1091.2 1089.9 1088.6	14.59	9336 9328 9318	1098.2 14.48 1096.9 14.71 1095.6 14.95	9410 9401 9392	1105.2 1103.9 1102.6	14.83 15.06
240 239 238	24.97 24.52 24.08	9162 9153 9144	1080.3 14.94 1079.1 15.18 1077.8 15.43	9236 9226 9217	1087.3 1086.1 1084.8	15.31	9309 9300 9291	1094.3 15.18 1093.1 15.43 1091.8 15.67	9383 9373 9364	1101.3 1100.1 1098.8	15.55
237 236 235	23.64 23.21 22.79	9135 9127 9117	1076.6 15.68 1075.4 15.93 1074.1 16.20	9199	1083.6 1082.3 1081.0	16.06	9281 9272 9263	1090.6 15.93 1089.3 16.19 1088.0 16.46	9345 9335	1097.5 1096.2 1094.9	16.32
234 233 232		9109 9100 9091	1072.8 16.47 1071.6 16.74 1070.3 17.01	9173	1079.7 1078.5 1077.2	16.87	9254 9245 9235	1086.6 16.73 1085.4 17.00 1984.1 17.28	9317	1093.6 1092.3 1091.0	17.13
231 230 229	21.17 20.78 20.40	9082 9074 9064	1069.1 17.29 1067.8 17.58 1066.5 17.87	9146	1076.0 1074.7 1073.4	17.72	9226 9218 9208	1082.9 17.57 1081.6 17.85 1080.3 18.16	9290	1089.8 1088.5 1087.2	17.99

e,	e e e		1.64			1.65			1.66			1.67	
Temperature, Degrees Fahr.	Pressure, Pounds per Square Inch.	Quality.	Heat Contents.	Specinc Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.
276 275 274	46.13 45.39 44.67	9805 9796 9786	1153.78 1152.59 1151.29	.119	9885 9875 9865	1161.1 1159.8 1158.5	9.193	9964 9954 9944	1168.5 1167.2 1165.9	9.136 9.266 9.400	8.2 6.3 .4.3	1175.9 1174.6 1173.3	9.29 9.40 9.51
273 272 271	43.95 43.24 42.54	9776 9766 9756	1150.09 1148.89 1147.59	. 521	9855 9845 9835	1157.3 1156.1 1154.8	9.598	9934 9924 9913	1164.6 1163.4 1162.1	9.675	2.4 0.6 9992	1172.0 1170.7 1169.4	
270 269 268	41.84 41.16 40.49	9746 9737 9726	1146.29 1145.09 1143.8	.941	9825 9815 9804	1153.5 1152.3 1151.1	10.02	9903 9893 9882	1160.8 1159.6 1158.3	10.10	9982 9971 9960	1168.1 1166.9 1165.6	10.18
267 266 265	39.83 39.17 38.53	9717 9706 9697	1142.5 1141.2 1140.0	0.39	9795 9784 9775	1149.8 1148.5 1147.3	10.47	9873 9861 9852	1157.0 1155.7 115 4 .5	10.55	9950 9937 9930	1164.3 1163.0 1161.8	10.64
264 263 262	37.89 37.26 36.64	9688 9678 9668	1138.7 10 1137.5 10 1136.3 1	0.70 0.85 1.01	9765 9755 9745	1146.0 1144.8 1143.5	10.94	9842 9832 9822	1153.2 1152.0 1150.7	11.02	9920 9910 9899	1160.5 1159.2 11 57. 9	11.11
261 260 25 9	36.02 35.42 34.83	9658 9648 9639	1135.1 1133.8 1132.5	1.51	9735 9725 9715	1142.3 1141.0 1139.7	11. 4 3 11. 6 0	9812 9802 9792	1149.5 1148.2 1146.9	11.52	9889 9878 9868	1156.7 1155.4 1154.1	11.61 11.78
258 257 256	34.24 33.66 33.09	9629 9620 9610	1131.2 1130.0 1128.7	1.86 2.04	9705 9696 9686	1138.3 1137.1 1135.9	$11.95 \\ 12.14$	9781 9772 9762	1145.5 1144.3 1143.0	$12.05 \\ 12.23$	9858 9848 9838	1152.7 1151.5 1150.2	12.14 12.33
255 254 253	32.53 31.97 31.42	9600 9590 9580	1127.4 1126:1 1124.9	2.61	9676 9666 9656	1134.6 1133.2 1132.0	12.32 12.51 12.71	9752 9741 9731	1141.7 1140.4 1139.2	12.41 12.61 12.81	9828 9817 9807	1148.9 1147.5 1146.3	12.51 12.70 12.91
252 251 250	30.88 30.35 29.82	9571 9561 9551	1123.6 1122.4 1121.1	- 1	9646 9636 9626	1130.7 1129.5 1128.2	13.10	9722 9712 9701	1137.9 1136.6 1135.3	13.00 13.20 13.41	9797 9787 9776	1145.0 1143.7 1142.4	13.30
249 248 247	29.30 28.79 28.29	9542 9532 9523	1119.8 1118.5 1117.3	3.01	9617 9607 9598	1126,9 1125.6 1124.3	13.51 13.72 13.94	9692 9682 9672	1134.0 1132.6 1131.4	13.83	9767 9757 97 47	1141.1 1139.7 1138.4	13.93
246 245 244	27.80 27.31 26.83	9513 9503 9494	1116.0 1114.8 1113.5	4.26 4.49	9588 9578 9569	1123.0 1121.8 1120.5	14.38 14.60	9662 9652 9643	1130.1 1128.8 1127.5	14.49	9737 9726 9717	1137.1 1135.9 1134.6	14.60
243 242 241	26.35 25.88 25.42	9484 9475 9465	1112.2 1110.9 1109.6	4.71 4.94 5.18	9558 9549 9539	1119.2 1117.9 1116.6	14.83 15.06 15.30	9632 9623 9613	1126.3 1125.0 1123.7	15.18 15.42	9706 9697 9686	1133.3 1132.0 1130.7	15.29 15.54
240 239 238	24.97 24.52 24.08	9456 9446 9437	1108.3 1107.0 1105.7	5.67	9530 9520 95 10	1115.3 1114.0 1112.7	15.79	9603 9593 9584	1122.3 1121.0 1119.7	15.91	9677 9666 9657	1129.3 1128.0 1126.7	16.04
237 236 235	23.64 23.21 22.79	9427 9418 9408	1104.5 1103.2 1101.9	6.72	9500 9491 9481	1111.4 1110.1 1108.8	16.57	9573 9564 955 4	1118.4 1117.1 1115.8	16.70	9646 9637 9626	1125.4 1124.0 1122.7	16.83 17.11
234 233 332	22.38 21.97 21.57	9399 9390 9380	1100.5 10 1099.2 11 1097.9 11	7.55	9472 9462 9452	1107.4 1106.1 1104.8	17.40	9544 9535 9524	1114.4 1113.1 1111.8	17.53 17.82	9617 9607 9597	1121.3 1120.0 1118.7	17.67 17.96
231 230 229	21.17 20.78 20.40	9371 9362 9351	1096.7 1095.4 1094.1	7.84 8.13 8.44	9443 9434 9423	1103.6 1102.3 1100.9	18.27	9515 9505 9 4 95	1110.5 1109.2 1107.8	118 411	9587 9577 9 5 67	1117.4 1116.1 1114.7	18.55

sbr.	, Pounds		1.60		1.61		1.62		1.63	
Temperatures, Degrees Fahr.	Pressure, Po per Squar Inch.	Quality.	Heat Contents. Specific Volume.	Quality.	Heat Contents. Specific	Quality.	Heat Contents. Specific Volume.	Quality.	Heat Contents. Specific	volume.
228 227 226	20.02 19.64 19.28	9055 9047 9039	1065.2 18.17 1064.0 18.47 1062.7 18.78	9118	1072.1 18.3 1070.9 18.6 1069.6 18.9	2 9190	1079.0 18.46 1077.7 18.77 1076.4 19.08	9270 9261 9253	1085.8 1084.6 1083.3 19.2	1
225 224 223	18.91 18.56 18.21	9029 9020 9012	1061.5 19.11 1060.2 19.43 1059.0 19.76	9091	1068.3 19.2 1067.0 19.5 1065.8 19.9	8 9162	1075.1 19.41 1073.8 19.74 1072.6 20.07	9234	1082.0 1080.7 1079.4 20.2	39
222 221 220	17.86 17.52 17.19	9003 8995 8986	1057.7 20.10 1056.5 20.44 1055.2 20.79	9074 9065 9056	1064.5 20.2 1063.3 20.6 1062.0 20.9	0 9136	1071.3 20.42 1070.1 20.77 1068.8 21.12	9215 9206 9197	1078.1 20.5 1076.9 20.9 1075.6 21.2	93
219 218 217	16.86 16.54 16.22	8976 8968 8959	1053.9 21.18 1052.6 21.5 1051.3 21.88	9047 9038 9029	1060.7 21.3 1059.8 21.6 1058.0 22.6	9117 88 9108 9099	1067.4 21.48 1066.0 21.85 1064.8 22.23		1074.2 21.6 1072.8 22.0 1071.5 22.4	35)2 40
216 215 214	15.90 15.60 15.29	8950 8942 8933	1050.0 22.2 1048.7 22.6 1047.4 23.0	9020 9011 9002	1056.7 22.4 1055.4 22.8 1054.1 23.5	33 9081	1063.5 22.62 1062.2 23.01 1060.0 23.41	9160 9151 9141	1070.2 22.7 1068.9 1067.6 23.5	79 19 59
213 212 211	14.99 14.70 14.41	8924 8915 8907	1046.2 23.40 1044.9 23.80 1043.6 24.3	8985	1052.9 1051.6 24.0 1050.3	06 9054	1059.6 23.33 1058.3 24.25 1057.0 24.68	9123	1066.3 24.0 1065.0 24.4 1063.7 24.8	43
210 209 208	14.13 13.85 13.57	8899 8890 8882	1042.3 24.74 1041.0 25.18 1039.7 25.6	8959	1049.0 24.9 1047.7 25.1 1046.4 25.8	37 9028	1055.7 25.12 1054.3 25.57 1053.0 26.03	9097	1062.4 25.3 1061.0 25.7 1059.7 26.2	76
207 206 205	13.30 13.03 12.77	8873 8864 8855	1038.4 26.09 1037.1 26.5 1035.8 27.0	8932	1045.0 26.1 1043.7 26.1 1042.4 27.1	78 9001	1051.7 26.50 1050.4 26.98 1049.1 27.48	9069	1058.4 26.7 1057.1 27.1 1055.7 27.6	19
204 203 202	12.51 12.26 12.01		1034.5 27.50 1033.2 28.00 1031.9 28.50	8905	1041.1 27.1 1039.8 28.1 1038.6 28.1	27 8973	1046.4 28.49	9041	1054.4 28.1 1053.1 28.7 1051.8 29.2	71
201 200 199	11.77 11.53 11.29		1030.6 29.10 1029.3 29.6 1028.0 30.1	8879	1037.2 29.1 1035.9 29.1 1034.6 30.4	85¦ 8947	1042.5 30.08	9014	1050.4 1049.1 1047.7 30.3	31
198 197 196	11.06 10.83 10.61	8786	1026.7 30.7 1025.3 31.2 1024.0 31.8	8853	1033.3 30.1 1031.9 31. 1030.5 32.	53 8920	1038.4 31.76	8997 8987 8978	1046.5 31.4 1045.0 32.0 1043.6 32.6	00
195 194 193	10.39 10.17 9.96	8760	1022.7 32.4 1021.4 33.0 1020.1 33.7	8827	1029.3 32.1 1027.9 33.1 1026.6 33.1	34 8893	1034.5 33.59	8969 8960 8951	1042.4 33.2 1041.0 33.8 1039.7 34.4	84
192 191 190	9.75 9.54 9.34		1018.8 34.3 1017.4 35.0 1016.2 35.7	8800	1025.3 34.1 1023.9 35.1 1022.6 35.1	30 8866	1030.4 35.56	8932	1038.3 35.1 1037.0 35.8 1035.6 36.5	83
189 188 187		8708	1014.9 36.3 1013.5 37.0 1012.2 37.8	9 8774	1021.4 36.1 1020.0 37.1 1018.7 38.	37 8839	1026.5 37.65	8905	1034.3 37.2 1032.9 37.9 1031.6 38.6	93
186 185 184	8.38	8690 8682 8673	1010.9 38.5 1009.6 39.2 1008.2 40.0	7 8747	1017.3 38. 1016.0 39. 1014.6 40.	56 8812	1022.5 39.86	8878	1030.2 39.3 1028.9 40.1 1027.5 40.9	15
183 182 181	8.02 7.85 7.68	8664 8656 8648	1006.9 40.8 1005.4 41.6 1004.2 42.4	8721	1013.3 41. 1012.0 41. 1010.6 42.	13 8795 96 8786 80 8777	1018.4 42.27	8860 8851 8842	1026.2 41.7 1024.8 42.5 1023.4 43.4	58

e,	e e		1.64			1.65	•		1.66			1.67	
Temperature, Degrees Fahr.	Pressure, Pounds per Square Inch.	Quality.	Heat Con- tents.	Specino Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.
228 227 226	20.02 19.64 19.28	9342 9333 9324	1092.7 1091.4 1090.1	9.06	9404	1099.6 1098.3 1097.0	19.20	9485 9476 9467	1106.5 1105.2 1103.9	19.35	9557 9547 9539	1113.3 1112.0 1110.7	19.50 l
225 224 223	18.91 18.56 18.21	9314 9305 9295	1088.8 1087.5 2 1086.2	0.04	9385 9376 9366	1095.7 1094.3 1093.1	20.20	9456 9447 9437	1102.6 1101.2 1099.9	20.35	9527 9518 9508	1109.4 1108.0 1106.7	20.50
222 221 220	17.86 17.52 17.19	9286 9277 9268	1084.9 1083.6 1082.3	1.09	9357 9347 9338	1091.8 1090.5 1089.1	20.89 21.25 21.61	9428 9418 9408	1098.6 1097.3 1095.9	21.41	9498 9489 9479	1105.4 1104.1 1102.7	21.21 21.57 21.93
219 218 217	16.86 16.54 16.22	9258 9248 9239	1081.0 1079.6 2 1078.3	2.19	9328 9318 9309	1087.8 1086.4 1085.1	22.35	9398 9388 9379	1094.5 1093.1 1091.8	22.52	9468 9459 9449	1101.3 1099.9 1098.6	22.69
216 215 214	15.90 15.60 15.29	9230 9220 9211	1077.02 1075.72 1074.42	2.96 3.36 3.77	9300 9290 9281	1083.7 1082.4 1081.1	23.54	9369 9360 9350	1090.5 1089.2 1087.8	23.31 23.72 24.13	9439 9430 9420	1097.2 1095.9 1094.6	23.89
213 212 211	14.99 14.70 14.41	9202 9192 9184	1073.1 1071.7 1070.4 2	4.19 4.62 5.06	9271 9262 9253	1079.8 1078.4 1077.1	24.37 24.80 25.25	9341 9331 9322	1086.5 1085.1 1083.8	24.99	9410 9400 9391	1093.3 1091.9 1090.6	24.74 25.17 25.63
210 209 208	14.13 13.85 13.57	9174 9166 9156	1069.1 1067.7 1066.4	5.51 5.96 6.42	9243 9234 9225	1075.8 1074.4 1073.1	26.15	9312 9303 9294	1082.5 1081.1 1079.7	26.35	9381 9372 9362	1089.2 1087.8 1086.4	26.54
207 206 205	13.30 13.03 12.77	9147 9137 9128	1065.0 1063.7 1062.4	7.39	9215 9206 9196	1071.7 1070.4 1069.0	27.60	9284 9274 9265	1078.4 1077.0 1075.7	27.30 27.80 28.31	9352 9342 9333	1085.0 1083.7 1082.3	28.01
204 203 202	12.51 12.26 12.01	9119 9109 9101	1061.0 1059.7 1058.4	8.40 8.92 9.46	9187 9177 9168	1067.7 1066.3 1065.0	29.14	9255 9245 9236	1074.3 1072.9 1071.6	29 35	9323 9313 9304	1080.9 1079.6 1078.2	29.57
201 200 199	11.77 11.53 11.29	9091 9082 9073	1057.02 1055.73 1054.3	0.53	9159 9149 9140	1063.6 1062.3 1060.9	30.76	9227 9217 9207	1070.3 1068.9 1067.5	30.44 30.99 31.55	9294 9284 9275	1076.9 1075.5 1074.1	30.66 31.21 31.78
198 197 196	11.06 10.83 10.61	9064 9054 9045	1053.03 1051.63 1050.23	1.66 2.24 2.84	9131 9121 9112	1059.6 1058.1 1056.8	32.48	9198 9188 9179	1066.2 1064.7 1063.3	32.13 32.72 33.33	9265 9255 924 5	1072.8 1071.3 1069.9	32.96
195 194 193	10.39 10.17 9.96	9026	1048.9 1047.5 1046.2	3.46 4.09 4.74	9103 9093 9084	1055.4 1054.1 1052.7	34.34	9170 9160 9151	1062.0 1060.6 1059.3	34.60	9236 9226 9217	1068.5 1067.1 1065.8	34.85
192 191 190	9.75 9.54 9.34		1044.83 1043.53 1042.13	5.41 6.09 6.78	9074 9065 9055	1051.4 1050.0 1048.6	36.36	9141 9131 9121	1057.9 1056.5 1055.1	35.93 36.62 37.32	9207 9197 9188	1064.4 1063.0 1061.6	36.89
189 188 187		8980 8971 8962	1040.8 1039.4 1038.1	7.49 8.21 8.94	9046 9037 9027	1047.3 1045.9 1044.6	38.49	9112 9102 9093	1053.8 1052.4 1051.0	38.04 38.77 39.51	9178 9168 9159	1060.3 1058.8 1057.5	39.05
186 185 184	8.38	8943	1036.7 1035.4 1034.0	9.68 0.45 1.25	9018 9008 8999	1043.1 1041.8 1040.4	40.74	9083 9074 9064	1049.6 1048.2 1046.8	41.04	9139	1056.1 1054.7 1053.2	41.33
183 182 181	8.02 7.85 7.68	8916	1032.6 1031.3 1029.8	2.89	8990 8981 8972	1039.0 1037.7 1036.2	42.36 43.21 44.08	9055 9046 9036	1045.5 1044.1 1042.6	42.67 43.52 44.40	9120 9111 9101	1051.9 1050.5 1049.0	42.97 43.83 44.71

pr.	Pounds 18re		1.60	1.61	L		1.62		1.63	
Temperature, Degrees Fahr.	Pressure, Pour per Square Inch.	Quality.	Heat Contents. Specific Volume.	Quality.	Specific Volume.	Quality.	Heat Contents. Specific Volume.	Quality.	Heat Con-	Specific Volume.
180	7.51	8639	1002.8 43.37	8703 1009	. 2 43 . 69	8768	1015.6 44.01	8833	1022.0	45.18
179	7.35	8630	1001.5 44.19	8695 1007	. 9 44 . 52	8759	1014.3 44.85	8824	1020.7	
178	7.19	8622	1000.2 45.09	8686 1006	. 6 45 . 43	8750	1012.9 45.76	8815	1019.3	
177	7.03	8613	998.9 45.99	8678 1005	.2 46.34	8742	1011.6 46.68	8806	1018.0	47.94
176	6.87	8604	997.5 46.89	8668 1003	.8 47.24	8732	1010.2 47.59	8796	1016.5	
175	6.71	8596	996.1 47.88	8660 1002	.5 48.23	8724	1008.8 48.59	8788	1015.2	
174	6.56	8587	994.8 48.86		. 2 49 . 22	8715	1007.5 49.59	8779	1013.8	49.95
173	6.42	8579	993.5 49.84		. 8 50 . 2	8706	1006.1 50.6	8770	1012.5	51.0
172	6.27	8570	992.1 50.8		. 5 51 . 2	8697	1004.8 51.6	8761	1011.1	52.0
171 170 169	6.13 5.99 5.85	8561 8552 8544	990.7 51.9 989.4 53.0 988.1 54.2	8616 995	52.3 5.7 53.4 54.6	8688 8679 8670	1003.4 52.6 1002.0 53.8 1000.6 55.0	8751 8742 8733	1009.7 1008.3 1006.9	53.0 54.2 55.4
168	5.72	8536	986.7 55.3	8589 991	5.0 55.7	8662	999.3 56.1	8725	1005.5	56.5
167	5.59	8527	985.3 56.4		.6 56.9	8652	997.9 57.3	8715	1004.1	57.7
166	5.46	8518	984.0 57.7		0.2 58.1	8644	996.5 58.5	8706	1002.8	58.9
165	5.33	8510	982.6 58.8	8563 987	5.9 59.2	8635	995.1 59.7	8697	1001.4	60.1
164	5.21	8501	981.3 60.0		5.5 60.5	8626	993.7 60.9	8688	1000.0	61.3
163	5.09	8492	979.9 61.2		61.7	8617	992.4 62.1	8679	998.6	62.6
162	4.969	8484	978.5 62.5	8537 983	.7 63.0	8608	991.0 63.4	8670	997.2	63.9
161	4.852	8475	977.2 63.9		.4 64.4	8599	989.6 64.8	8661	995.8	65.3
160	4.738	8467	975.8 65.4		.0 65.8	8590	988.2 66.3	8652	994.4	66.8
159 158 157	4.626 4.517 4.409	8458 8449 8441	974.5 66.7 973.1 68.2 971.8 69.7	8511 979	0.7 67.2 0.3 68.7 0.9 70.2	8582 8573 8564	986.8 67.7 985.4 69.2 984.1 70.7	8643 8634 8626	993.0 991.6 990.3	$68.2 \\ 69.7 \\ 71.2$
156	4.303	8432	970.4 71.3	8485 975	71.8	8555	982.7 72.3	8616	988.8	72.8
155	4.200	8424	969.0 72.8		173.3	8546	981.3 73.8	8607	987.4	74.4
154	4.099	8415	967.6 74.4		74.9	8537	979.9 75.5	8598	986.0	76.0
153	4.000	8406	966.2 76.0	8458 971	76.5	8528	978.5 77.1	8589	984.6	77.6
152	3.903	8397	964.8 77.7		.078.2	8519	977.1 78.8	8580	983.2	79.4
151	3.808	8388	963.4 79.4		.580.0	8510	975.7 80.6	8570	981.8	81.2
150	3.715	8380	962.1 81.2	8441 968	.2 81.8	8501	974.3 82.4	8562	980.4	83.0
149	3.624	8371	960.7 83.0	8432 966	.8 83.6	8492	972.9 84.2	8552	978.9	84.8
148	3.535	8363	959.3 85.0	8423 965	.4 85.6	8483	971.5 86.2	8544	977.6	86.8
147	3.447	8354	957.9 86.9	8405 962	87.5	8474	970.0 88.1	8534	976.1	88.8
146	3.361	8345	956.6 88.9		8.6 89.5	8465	968.7 90.2	8525	974.7	90.8
145	3.278	8336	955.1 90.9		2 91.5	8456	967.2 92.2	8516	973.3	92.8
144	3.196	8328	953.8 92.9	8378 958	.8 93.6	8447	965.8 94.3	8507	971.9	94.9
143	3.116	8319	952.3 95.1		.4 95.8	8438	964.4 96.4	8498	970.4	97.1
142	3.037	8311	951.0 97.3		.0 98.0	8429	963.0 98.7	8489	969.0	99.4
141 140 139	2.960 2.885 2.812	8302 8293 8285	949.6 948.1 946.8 104.3	8352 954	. 6 100 . 3 . 1 102 . 6 . 7 105 . 0		961.6 101.0 960.1 103.3 958.7 105.8			101.7 104.0 106.5
138 137 136	2.740 2.669 2.600	8276 8267 8258	945.4 106.7 943.9 109.2 942.5 111.8	8326 949	.3 107.4 .9 110.0 .5 112.6	8384	957.3 108.2 955.8 110.8 954.4 113.4	8453 8443 8434	961.8	109.0 111.5 114.2
135 134 133	2.533 2.467 2.403	8250 8241 8232	941.1 114.5 939.7 117.2 938.3 120.0	8299 945	115.3 .6 118.0 .2 120.9	8358	953.0 116.1 951.5 118.8 950.1 121.7	8426 8416 8407	957.5	116.9 119.7 122.6

shr.	spun		1.64			1.65			1.66			1.67	
Temperature, Degrees Fahr.	Pressure, Pounds per Square Inch.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.
180 179 178	7.51 7.35 7.19	8897 8888 8879	1028.4 1027.0 1025.7	44.66 45.51 46.44	8962 8953 8944	1034.8 1033.4 1032.1	44.99 45.84 46.77	9026 9017 9008	1041.2 1039.8 1038.4	46.17	9091 9082 9072	1047.6 1046.2 1044.8	45.64 46.50 47.45
177 176 175	7.03 6.87 6.71	8870 8860 8852	1024.3 1022.9 1021.5	47.37 48.20 49.30	8934 8925 8916	1030.7 1029.3 1027.9	48.64	8999 8989 8979	1037.1 1035.6 1034.2	48.99	9063 9053 9043	1043.4 1042.0 1040.6	49.34
174 173 172	6.56 6.42 6.27	8843 8833 8824	1020.2 1018.8 1017.4	50.3 51.3 52.3	8906 8897 8888	1026.5 1025.1 1023.7	51.7	8970 8961 8951	1032.8 1031.4 1030.0	52.1	9034 9024 9015	1039.2 1037.8 1036.4	52.4
171 170 169	6.13 5.99 5.85	8815 8805 8796	1016.0 1014.6 1013.2	54.6	8878 8869 8859	1022.3 1020.9 1019.5	55.0	8941 8932 8922	1028.6 1027.2 1025.8	55.4	9005 8995 8986	1034.9 1033.5 1032.0	55.8
168 167 166	5.72 5.59 5.46	8788 8778 8769	1011.8 1010.4 1009.0	58.1	8851 8841 8832	1018.1 1016.7 1015.3	58.5	8914 8904 8894	1024.4 1022.9 1021.6	57.8 58.9 60.2	8977 8966 8957	1030.6 1029.2 1027.8	58.2 59.4 60.6
165 164 163	5.33 5.21 5.09	8760 8751 8742	1007.6 1006.2 1004.8	61.8		1013.9 1012.4 1011.0	62.2	8885 8876 8866	1020.1 1018.7 1017.3	61.4 62.7 63.9	8948 8938 8928	1026.3 1024.9 1023.5	63.1
162 161 160	4.852	8732 8723 8714	1003.4 1002.0 1000.6	65.8	8794 8785 8776	1009.6 1008.2 1006.8	66.2	8856 8847 8838	1015.8 1014.5 1013.0	66.7	8919 8909 8900	1022.0 1020.7 1019.2	67.2
159 158 157	4.517	8705 8696 8687	999.2 997.8 996.4	70.2	8767 8757 8748	1005.4 1004.0 1002.6	70.7	8829 8819 8810	1011.6 1010.1 1008.8	71.2	8890 8881 8871	1017.8 1016.3 1014.9	71.7
156 155 154	4.200	8678 8668 8659	995.0 993.6 992.1	74.9	8739 8729 8720	1001.1 999.7 998.3	75.4	8800 8791 8781	1007.3 1005.9 1004.4	76.0	8862 8852 8842	1013.5 1012.0 1010.5	76.5
153 152 151	4.000 3.903 3.808	8650 8640 8631	990.7 989.3 987.9	79.9	8711 8701 8692	996.9 995.4 994.0	80.5	8772 8762 8752	1003.0 1001.5 1000.1	81.0	8833 8823 8813	1009.1 1007.7 1006.2	81.6
150 149 148	3.715 3.624 3.535	8622 8613 8604	986.5 985.0 983.6	85.4	8683 8673 8664	992.6 991.1 989.7	86.0	8743 8733 8724	998.7 997.2 995.8	86.6	8804 8794 8785	1004.8 1003.3 1001.9	87.2
147 146 145	3.447 3.361 3.278	8594 8585 8576	982.2 980.8 979.3	91.4	8654 8645 8636	988.2 986.8 985.4	92.1	8715 8705 8695	994.3 992.9 991.4	92.7	8775 8765 8755	1000.4 998.9 997.4	93.3
144 143 142	3.196 3.116 3.037	8567 8557 8548	977.9 976.4 975.0		8626 8617 8608	983.9 982.5 981.0	96.3 98.5 100.8	8686 8676 8667	990.0 988.5 987.0	96.9 99.2 101.5	8746 8736 8727	996.0 994.5 993.1	
141 140 139	2.960 2.885 2.812	8539 8530 8521	972.1	102.4 104.7 107.3	8598 8589 8580	978.1	103.1 105.5 108.0	8658 8648 8639	984.1	103.8 106.2 108.7	8717 8707 8698	990.1	104.5 106.9 109.5
138 137 136	2.740 2.669 2.600	8502	969.3 967.8 966.3	109.7 112.3 115.0	8571 8561 8552	975.2 973.7 972.3	110.5 113.1 115.8	8630 8620 8610	981.2 979.7 978.3	111.2 113.9 116.6	8689 8678 8669	985.7	112.0 114.6 117.4
135 134 133	2.467	8474		117.8 120.5 123.4	8533	969.3	118.6 121.3 124.3	8591	975.3	119.4 122.2 125.1		982.7 981.2 979.7	120.2 123.0 126.0

e, ahr.	Pounds agre		1.60			1.61			1.62			1.63	
Temperature, Degrees Fahr.	Pressure, Pour per Square Inch.	Quality.	Heat Con- tents.	Specific Volume.									
132 131 130	2.341 2.280 2.220	8224 8215 8207	936.9 935.4 934.0	125.9	8282 8273 8265	941.3	123.8 126.7 129.8	8340 8331 8323	948.7 947.3 945.8	124.7 127.6 130.7	8398 8389 8380	954.6 953.2 951.7	125.6 128.5 131.7
129 128 127	2.161 2.103 2.047	8198 8189 8181	932.6 931.2 929.8	132.1 135.3 138.6	8256 8247 8238	938.5 937.1 935.7	133.0 136.2 139.6	8314 8305 8296	944.4 942.9 941.5	133.9 137.2 140.5	8371 8362 8353	948.8	134.9 138.1 141.5
126 125 124	1.992 1.938 1.886	8172 8163 8154	928.3 926.9 925.5	142.0 145.5 149.1	8229 8220 8211	934.2 932.8 931.3	143.0 146.6 150.2	8287 8278 8268	940.0 938.6 937.1	147.6	8344 8335 8326	945.9 944.5 943.0	145.0 148.6 152.3
123 122 121	1.835 1.785 1.737	8145 8137 8129	924.1 922.6 921.2	156.8	8202 8194 8185	929.9 928.4 927.0	157.9	8259 8250 8242	935.7 934.2 932.8	159.0	8316 8307 8299	940.1	156.1 160.1 164.1
120 119 118	1.689 1.642 1.597	8120 8111 8102	919.8 918.4 916.9	169.0	8176 8167 8159	925.6 924.2 922.7	170 2	8233 8224 8215	931.3 929.9 928.5	167.1 171.4 175.8	8289 8280 8271	935.7	168.3 172.6 177.0
117 116 115	1.552 1.509 1.467	8093 8084 8076	915.5 914.0 912.6	177.9 182.5 187.2	8149 8140 8132	921.2 919.7 918.3	179.1 183.7 188.5	8206 8196 8188	927.0 925.5 924.1	180.4 185.0 189.8	8262 8253 8244	932.7 931.2 929.8	181.6 186.3 191.1
114 113 112	1.426 1.386 1.347	8067 8058 8049	911.1 909.7 908.2	192.0 196.9 202.1	8122 8113 8104	916.8 915.4 913.9	193.3 198.3 203.5	8178 8169 8160	922.6 921.1 919.6	199.6	8234 8225 8216	928.3 926.9 925.4	196.0 201.0 206.3
111 110 109	1.308 1.271 1.235	8040 8031 8022	906.8 905.3 903.9	207.4 213.0 218.7	8095 8087 8077	912.5 911.0 909.6	208.9 214.5 220.2	8151 8142 8132	918.2 916.7 915.2	210.3 215.9 221.7	8206 8197 8188	922.4	211.7 217.4 223.2
108 107 106	1.200 1.165 1.131	8014 8004 7996	902.4 901.0 899.5	230.7	8069 8059 8051	908.1 906.6 905.1	226.1 232.3 238.6	8124 8114 8105	913.7 912.3 910.8	227.6 233.9 240.2	8179 8169 8160	917.9	229.2 235.4 241.9
105 104 103	1.098 1.066 1.035	7987 7978 7969	898.0 896.5 895.1	250.1	8042 8032 8024	903.6 902.1 900.7	245.1 251.8 258.7	8096 8087 8078	909.3 907.8 906.3	246.8 253.5 260.4	8151 8142 8133	913.4	248.4 255.2 262.2
102 101 100		7961 7952 7943	893.6 892.1 890.6	271.2	8015 8006 7997	899.2 897.7 896.2	265.8 273.1 280.5	8069 8060 8051	904.8 903.3 901.8	274.9	8123 8115 8105	908.9	269.4 276.8 284.3
99 98 97	0.918 0.891 0.864	7934 7925 7917	889.2 887.7 886.3	294.3	7988 7979 7970	893.3	288.3 296.3 304.5	8042 8033 8024	900.3 898.8 897.4	298.3	8096 8087 8077	904.4	292.2 300.3 308.6
96 95 94	0.838 0.813 0.788	7908 7899 7890	884.9 883.4 881.9	319.8	7961 7952 7943	890.4 888.9 887.4	313.1 321.9 331.0	8015 8006 7997	896.0 894.5 893.0	315.2 324.1 333.2	8068 8059 8050	901.5 900.0 898.5	317.3 326.2 335.4
93 92 91	0.741	7872	880.4 878.9 877.4	348.0	7935 7925 7917	884.4	340.5 350.3 360.5	7978	889.9	342.8 352.6 362.9	8031	895.5	345.0 355.0 365.3
90 89 88	0.696 0.675 0.654	7846	875.9 874.4 872.9	379.3	7908 7899 7890	881.4 879.9 878.4	371.0 381.8 392.9	7960 7951 7942	886.9 885.4 883.9	373.5 384.4 395.5	8013 8004 7995	892.4 890.9 889.3	376.0 386.9 398.1
87 86 85	0.633 0.613 0.594	7820	871.4 869.9 868.4	412.9	7881 7872 7863	875.4	404.3 415.6 427.7	7924	880.9	407.0 418.4 430.6		886.3	409.7 421.2 433.4
			<u>'</u>										

å,	Pounds uare		1.64			1.65			1.66			1.67	
Temperature, Degrees Fahr.	Pressure, Poper Squar	Quality.	Heat Con- tents.	Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.
132 131 130	2.341 2.280 2.220	8456 8447 8438	960.5 959.1 957.6		8515 8505 8496	966.4 965.0 963.5	130.3	8573 8563 8554		128.2 131.2 134.4	8631 8621 8612	978.3 976.8 975.3	
129 128 127	2.161 2.103 2.047	8429 8420 8411	956.2 13 954.7 13 953.3 14	35.8 39.1 42.5	8487 8478 8468	962.0 960.6 959.1	140.0	8544 8535 8526	966.4	137.7 141.0 144.4	8602 8593 8583	972.3	138.6 142.0 145.4
126 125 124	1.992 1.938 1.886	8401 8392 8383	951.8 14 950.4 14 948.8 15	49.6	8459 8449 8440	957.6 956.2 954.6	147.0 150.6 154.4	8516 8506 8497	963.5 962.1 960.5	148.0 151.7 155.4	8573 8564 8554	967.7	149.0 152.7 156.4
123 122 121	1.835 1.785 1.737	8373 8364 8355	947.4 945.9 944.4	61.2	8430 8421 8412	953.2 951.7 950.2	158.2 162.3 166.4	8487 8478 8469	959.1 957.5 956.0	159.3 163.4 167.5	8544 8535 8525		160.4 164.5 168.6
120 119 118	1.689 1.642 1.597	8346 8336 8328	942.9 941.5 940.0	73.7	8403 8393 8384	948.7 947.3 945.8	170.6 174.9 179.4	8459 8449 8440	954.5 953.0 951.5	171.7 176.1 180.6	8516 8506 8496	958.8	172.9 177.3 181.8
117 116 115	1.552 1.509 1.467	8318 8309 8300	938.5 937.0 935.5	87.5	8374 8365 8355	944.3 942.8 941.3	188.8	8430 8421 8411	950.0 948.5 947.0	185.3 190.1 195.0	8487 8477 8467	954.2	186.5 191.3 196.3
114 113 112	1.426 1.386 1.347	8290 8280 8271	934.0 932.6 931.1 20	02.4	8346 8336 8327	939.8 938.3 936.8	203.7	8401 8392 8382	944.0	200.0 205.1 210.5	8457 8447 8438	951.3 949.8 948.2	201.3 206.4 211.9
111 110 109	1.308 1.271 1.235	8261 8253 8243	929.6 928.1 926.6	18.9	8317 8308 8298	935.3 933.8 932.3	214.6 220.3 226.2	8372 8363 8353	939.5	216.0 221.8 227.7	8428 8418 8408	945.2	217.4 223.3 229.2
108 107 106	1.200 1.165 1.131	8234 8224 8215	925.1 923.6 922.1	37.0	8289 8279 8270	930.8 929.3 927.7	238.6	8344 8334 8324	934.9	233.8 240.2 246.7	8399 8389 8379	940.6	235.3 241.8 248.4
105 104 103	1.098 1.066 1.035	8206 8196 8187	920.6 919.1 917.6 20	56.9	8260 8251 8241	926.2 924.7 923.2	258.7	8315 8305 8296	930.3	253.4 260.4 267.5	8370 8360 8350	937.5 936.0 934.5	262 .1
102 101 100	1.005 0.975 0.946	8178 8169 8159	916.127 914.527 913.028	71.2 78.6 86.2	8232 8223 8213	921.7 920.2 918.6	280.5	8286 8277 8267	927.3 925.8 924.2	274.8 282.3 290.0	8341 8331 8321	932.9 931.4 929.8	276.6 284.2 291.9
99 98 97	0.918 0.891 0.864	8150 8140 8131	911.5 910.0 908.5	94.1 02.3 10.7	8205 8194 8185	917.1 915.6 914.1	304.2	8257 8248 8238	922.7 921.2 919.7	298.0 306.2 314.8	8311 8302 8292	928.3 926.7 925.2	
96 95 94	0.838 0.813 0.788	8122 8113 8103	907.131 905.532 904.033	28.4	8175 8166 8157	912.6 911.1 909.6	330.6	8229 8219 8210	916.7	323.6 332.7 342.1	8282 8273 8263	923.7 922.2 920.6	334.9
93 92 91	0.764 0.741 0.718	8094 8085 8075	902.5 34 901.0 35 899.4 36	57.3	8147 8138 8128	908.1 906.5 905.0	349.6 359.7 370.2	8200 8191 8181	912.0	351.9 362.0 372.6	8254 8244 8234	919.1 917.5 916.0	364.4
90 89 88	0.696 0.675 0.654	8066 8057 8047	897.9 896.4 894.8	78.5 39.5 00.7	8119 8109 8100	903.4 901.9 900.3	380.9 392.0 403.4	8171 8162 8152	908.9 907.4 905.8	383.4 394.5 406.0	8224 8215 8205	914.4 912.9 911.2	385.9 397.1 408.6
87 86 85	0.633 0.613 0.594	8029	893.3 41 891.8 42 890.2 43	23.9	8091 8081 8072	898.8 897.2 895.7	426.7	8143 8133 8124	902.7	417.7 429.4 441.9		909.7 908.1 906.5	432.2

ahr.	punog 1.68		1.69			1.70			1.71				
Temperature, Degrees Fahr	Pressure, Pounds per Square Inch.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con-	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.
420 419 418	308.5 305.1 301.8					: 							
417 416 415	298.5 295.2 292.0								,				
414 413 412	288.9 285.7 282.5	300.9 298.7 296.6	1368.3 1366.8 1365.4	2.410 2.430 2.450	•••				:::				
411 410 409	279.4 276.3 273.3	294.5 292.4 290.4	1364.0 1362.6 1361.3	2.470 2.490 2.510	•••								
408 407 406	270.3 267.3 264.3	288.3 286.2 284.1	1359.9 1358.6 1357.3	2.530 2.551 2.572	•••								
405 404 403	261.3 258.4 255.5	280.0	1355.9 1354.6 1353.3	2.614	301.0	 13 64 .9	2.697			:::			
402 401 400	252.6 249.7 246.9	275.9 273.8 271.7	1351.9 1350.5 1349.1	2.658 2.680 2.703	298.9 296.7 294.5	1363.5 1362.1 1360.7	2.720 2.742 2.765			: :	:::		
399 398 397	244.1 241.4 238.6	269.6 267.6 265.5	1347.8 1346.4 1345.0	2.725 2.748 2.770	292.3 290.2 288.1	1359.3 1357.9 1356.5	2.788 2.811 2.835						
396 395 394	235.9 233.2 230.5	261.4 259.4	1343.7 1342.4 1341.0	2.820 2.843	283.9	1355.2 1353.9 1352.6	2.884		:::				
393 392 391	227.9 225.2 222.6	253.3	1339.7 1338.3 1337.0	2.917	277.7 275.5	1351.2 1349.8 1348.3	2.958 2.983	299.9 297.6	1361.0 1359.6	3.030 3.056	•••		
390 389 388	220.1 217.5 215.0	251.2 249.2 247.1	1335.7 1334.3 1333.0	2.941 2.967 2.993	269.0	1346.9 1345.5 1344.0	3.061	295.4 293.2 291.1	1358.2 1356.8 1355.4	3.083 3.109 3.136	•••		
387 386 385	212.5 210.0 207.5	243.0 241.0	1331.7 1330.4 1329.0	3.045 3.071	264.8 262.6	1342.6 1341.2 1339.8	3.116 3.144	287.0 284.9	1354.0 1352.6 1351.2	3.191 3.219	•••		•••
384 383 382	205.1 202.6 200.3	234.8	1327.7 1326.4 1325.0	3.153	256.1	1338.4 1337.0 1335.7	3.229	280.5 278.3	1349.7 1348.2 1346.7	3.275 3.304		1358.4	
381 380 379	197.9 195.5 193.2	228.5	1323.6 1322.3 1320.9	3.231	249.8	1334.3 1332.9 1331.6	3.316	271.8	1345.3 1343.8 1342.4	3.392	294.1	1356.9 1355.4 1354.0	3.476
378 377 376	190.9 188.6 186.3	224.4 222.4	1319.5 1318.1 1316.8	3.297 3.325	245.6 243.5	1330.2 1328.9 1327.5	3.376 3.408	267.4 265.2	1340.9 1339.5 1338.1	3.452 3.482		1352.7 1351.2 1349.8	
375 374 373	184.1 181.9 179.7	220.3 218.2 216.2	1315.5 1314.1 1312.8	3.354 3.384 3.415	241.4 239.3 237.1	1326.1 1324.7 1323.3	3.438 3.469 3.501	263.0 261.0 258.9	1336.8 1335.4 1334.1	3.513 3.545 3.578	285.5 283.3 281.1	1348.3 1346.8 1345.3	3.599 3.631 3.663

shr.	unde		1.72			1.73			1.74			1.75	- 1
Temperature, Degrees Fahr.	Pressure, Pounds per Square Inch.	Quality.	Heat Con- tents.	Specific - Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.
420 419 418	308.5 305.1 301.8		:::	;									
417 416 415	298.5 295.2 292.0	•••			•••	•••		•••					
414 413 412	288.9 285.7 282.5	•••			•••								
411 410 409	279.4 276.3 273.3				•••								
408 407 406	270.3 267.3 264.3	•••			•••	:::		•••			•••		
405 404 403	261.3 258.4 255.5	•••			•••								
402 401 400	1				•••			•••			•••		
399 398 397	244.1 241.4 238.6	•••			•••						• • • • • • • • • • • • • • • • • • • •		
396 395 394	235.9 233.2 230.5	•••			•••	· · · ·							
393 392 391	1	•••			•••						•••		
390 389 388	1	•••		:::	•••						•••		
387 386 385	1		ļ	:::							•••		
384 383 382	205.1 202.6 200.3			:::							•••		
381 380 379		•••			•••								
378 377 376	190.9 188.6 186.3				•••			•••			•••		
375 374 373	181.9									:	•••		

hr.	pur		1.68		1.69			1.70			1.71	
Temperature, Degrees Fahr.	Pressure, Pounds per Square Inch.	Quality.	Heat Contents. Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.
372 371 370	177.5 175.3 173.2	212.1	1311.5 3.446 1310.2 3.478 1308.8 3.509	232.9	1321.9 1320.6 1319.2	3.565	254.5	1332.7 1331.2 1329.8	3.642	276.8	1344.0 1342.5 1341.0	3.730
369 368 367	171.1 169.0 166.9	206.0	1307.5 3.540 1306.2 3.573 1304.9 3.605	226.7	1317.8 1316.5 1315.1	3.666	248.0	1328.4 1327.0 1325.6	3.743	270.0	1339.5 1338.0 1336.5	3.834
366 365 364	164.8 162.8 160.8	200.0	1303.5 3.640 1302.2 3.674 1300.9 3.708	220.4	1313.7 1312.4 1311.1	3.768	241.5	1324.2 1322.8 1321.4	3.849	263.4	1335.1 1333.7 1332.2	3.940
363 362 361	158.8 156.8 154.8	193.9	1299.5 3.744 1298.2 3.780 1296.9 3.815	214.1	1309.8 1308.4 1307.1	3.875	235.0	1320.0 1318.6 1317.2	3.959	256.7	1330.8 1329.4 1328.0	4.053
360 359 358	152.9 151.0 149.1	187.9	1295.5 3.853 1294.2 3.890 1292.9 3.927	208.1	1305.7 1304.3 1302.9	3.986	228.7	1315.8 1314.4 1313.0	4.074	252.3 250.1 247.9	1326.6 1325.1 1323.7	4.131 4.170 4.210
357 356 355	147.2 145.3 143.5	181.7	1291.6 3.965 1290.3 4.004 1288.9 4.043	201.9	1301.5 1300.1 1298.8	4.100	222.3	1311.6 1310.3 1308.9	4.193	243.5	1322.3 1320.8 1319.4	4.292
354 353 352	141.6 139.8 138.0	175.7	1287.6 4.082 1286.3 4.122 1284.9 4.162	195.6	1297.4 1296.0 1294.6	4.220	216.0	1307.5 1306.1 1304.8	4.315	236.9	1318.0 1316.7 1315.4	4.418
351 350 349	136.3 134.5 132.8	169.6	1283.5 4.204 1282.1 4.246 1280.7 4.288	189.3	1293.2 1291.8 1290 5	4.346	209.8	1303.4 1302.1 1300.7	4 . 442	230.2	1314.1 1312.6 1311.1	4.546
348 347 346	131.1 129.4 127.7	163.5	1279.3 4.330 1277.9 4.373 1276.6 4.416	183.1	1289.2 1287.8 1286.5	4.474	203.4	1299.3 1297.9 1296.5	4.575	223.9	1309.6 1308.1 1306.6	4.684
345 344 343	126.0 124.4 122.7	157.4	1275.3 4.459 1274.0 4.504 1272.7 4.549	177.0	1285.1 1283.8 1282.5	4.609	197.0	1295.1 1293.6 1292.2	4.713	217.3	1305.1 1303.7 1302.3	4.825
342 341 340	121.1 119.5 117.9	151.3	1271.3 4.594 1270.0 4.640 1268.6 4.688		1281.1 1279.7 1278.3		190.6	1290.8 1289.4 1288.0	4.857	2 10.9	1300.9 1299.5 1298.1	4.970
339 338 337	116.3 114.8 113.3	145.3	1267.2 4.734 1265.9 4.782 1264.5 4.830	164.6 162.5	1277.0 1275.6 1274.2	4.896 4.946	184.2	1286.6 1285.2 1283.8	5.008	204.5	1296.6 1295.2 1293.8	5.123
336 335 334	111.7 110.3 108.8	139.3 137.3	1263.2 4.880 1261.8 4.930 1260.5 4.980	158.4 156.3	1272.8 1271.4 1270.0	5.048 5.099	177.9 175.7	1282.4 1281.0 1279.6	5.165 5. 22 0	197.9 195.7	1292.3 1290.9 1289.5	5.285
333 332 331		133.3 131.3	1259.25.030 1257.95.083 1256.65.137	152.2 150.2	1268.6 1267.2 1265.9	5.203 5.257	171.4 169.3	1278.2 1276.8 1275.4	5.330 5.385	191.3 189.1	1288.1 1286.7 1285.2	5.450 5.510
330 329 328	100.2	125.3	1255.2 5.190 1253.8 5.245 1252.5 5.300	144.0	1264.5 1263.2 1261.9	5.366 5.421	165.0 162.9	1274.0 1272.5 1271.1	5.500 5.560	182.7	1283.8 1282.4 1280.9	5.684
327 326 325	98.8 97.5 96.1	123.3 121.3 119.3	1251.25.358 1249.85.413 1248.45.470	139.9	1260.5 1259.1 1257.8	5.537	160.8 158.7 156.5	1269.7 1268.3 1266.9	5.617 5.676 5.735	180.5 178.3 176.1	1279.5 1278.0 1276.6	5 805

j.	Pounds lare	1.72		1.73	-		1.74			1.75			
Temperature, Degrees Fahr.	Pressure, Pour per Square Inch.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.
372 371 37 0	177.5 175.3 173.2	298.0	1354.6 1353.1 1351.6	3.817									
369 368 367	171.1 169.0 166.9	291.4	1350.1 1348.6 1347.2	3.922		 							
366 365 364	164.8 162.8 160.8	284.9	1345.8 1344.4 1343.0	4.031							 :::		
363 362 361	158.8 156.8 154.8	278.3	1341.6 1340.2 1338.7	4.145		 1351.3 1 34 9. 7							
360 359 358	152.9 151.0 149.1	271.4	1337.3 1335.8 1334.3	4.265	293.3	1348.1 1346.5 1345.0	4.365	•••				•••	
357 356 355	147.2 145.3 143.5	264.7	1332.8 1331.4 1330.0	4.390	286.4	1343.5 1342.0 1340.5	4.490						•••
354 353 352	141.6 139.8 138.0	260.1 258.0 255.8	1328.5 1327.0 1325.6	4.474 4.519 4.562	279.5	1339.0 1337.5 1336.0	4.623	299.6	 1347.0	 4. 777	•••		
351 350 349	136.3 134.5 132.8	251.3	1324.1 1322.6 1321.1	4.653	272.6	1334.5 1333.0 1331.5	4.760	297.2 294.9 292.6	1345.5 1344.0 1342.5	4.823 4.870 4.918	•••	•••	
348 347 346	131.1 129.4 127.7	246.7 244.4 242.2	1319.7 1318.2 1316.7	4.744 4.790 4.838	265.9	1330.1 1328.7 1327.2	4.900	288.0	1341.0 1339.5 1338.0	5.014	•••		· · · ·
345 344 343	126.0 124.4 122.7	237.7	1315.2 1313.8 1312.3	4.935	259.1	1325.8 1324.3 1322.9	5.046	281.0	1336.5 1335.0 1333.5	5.165	 299.7	1343.9	 5.323
342 341 340	121.1 119.5 117.9	233.1 230.9 228.7	1310.8 1309.3 1307.8	5.031 5.082 5.135	252.3	1321.4 1320.0 1318.5	5.203	276.2 273.8 271.5	1332.0 1330.5 1329.0	5.269 5.320 5.376	295.0	1342.4 1340.9 1339.4	5.430
339 338 337	116.3 114.8 113.3	224.1	1306.3 1304.8 1303.3	5.239	245.5	1317.0 1315.5 1314.0	5.363	266.8	1327.5 1325.9 1324.4	5.485	287.9	1337.8 1336.3 1334.7	5.598
336 335 334	111.7 110.3 108.8	217.6 215.4	1301.9 1300.5 1299.1	5.400 5.455	238.8 236.5	1312.6 1311.1 1309.6	5.529 5.588	259.8 257.4	1322.9 1321.4 1319.9	5.652 5.710	280.7	1333.1 1331.6 1330.0	5.768
333 332 331	107.3 105.8 104.4	211.1 208.9	1297.6 1296.2 1294.8	5.567 5.626	231.9 229.6	1308.1 1306.6 1305.1	5.700 5.760	252.8 250.5	1318.3 1316.8 1315.3	5.825 5.884	273.5	1328.4 1326.9 1325.3	5.949
330 329 328	103.0 101.6 100.2	204.3 202.1	1293.4 1292.0 1290.5	5.740 5.800	225.0 222.7	1303.6 1302.1 1300.5	5.880 5.940	245.8 243.4	1313.8 1312.3 1310.8	6.006 6.068	266.3 263.9	1323.8 1322.3 1320.8	6.139 6.205
327 326 325	97.5	197.6	1289.0 1287.5 1286.0	5.925	218.1	1299.0 1297.5 1296.0	B. 063	241.1 238.7 236.4	1309.3 1307.8 1306.3	6.130 6.192 6.255	261.6 259.2 256.8	1319.3 1317.8 1316.3	6.337

j.	nnds		1.68		1.69		1.	70		1.71	
Temperature, Degrees Fahr.	Pressure, Pounds per Square Inch.	Quality.	Heat Contents. Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	tents. Specific	Quality.	Heat Con- tents.	Specific Volume.
324 323 322	94.8 93.5 92.2	115.3	1247.0 5.528 1245.6 5.588 1244.3 5.646	133.8	1256.4 1255.0 1253.7	5.713	152.2 12	65.5 5.795 64.0 5.857 62.6 5.919	171.9	1275.2 1273.8 1272.4	5.988
321 320 319	90.9 89.6 88.3	109.4	1242.9 5.705 1241.6 5.768 1240.2 5.832	129.7 127.7 125.7	1252.3 1250.9 1249.5	5.839 5.905 5.969	145.9 12	61.2 5.980 59.8 6.05 58.4 6.11	165.3	1271.0 1269.6 1268.1	6.18
318 317 316	87.1 85.9 84.6	103.4	1238.9 5.898 1237.4 5.960 1236.1 6.03	121.7	1248.2 1246.8 1245.5	6.10	139.6 12	57.1 6.18 55.7 6.25 54.3 6.32	158.8	1266.7 1265.3 1263.8	6.40
315 314 313	83.4 82.3 81.1	97.5	1234.8 6.10 1233.5 6.17 1232.1 6.23	115.6	1244.1 1242.7 1241.3	6.30	133.3 12	52.9 6.39 51.6 6.46 50.2 6.53	152.2	1262.3 1260.9 1259.4	6.60
312 311 310	79.9 78.8 77.6	91.6	1230.8 6.30 1229.5 6.37 1228.2 6.44	109.6	1240.0 1238.6 1237.2	6.51	127.0 12	48.8 6.60 47.4 6.67 46.0 6.75	145.7	1258.0 1256.5 1255.0	6.83
309 308 307	76.5 75.4 74.3	85.7	1226.9 6.51 1225.6 6.58 1224.2 6.65	103.5	1235.9 1234.5 1233.2	6.73	120.9 12	44.6 43.2 6.89 41.8 6.97	139.1	1253.6 1252.2 1250.8	7.05
306 305 304	$73.2 \\ 72.2 \\ 71.1$	79.9	1222.9 6.73 1221.6 6.80 1220.3 6.88	97.5	1231.9 1230.5 1229.1	6.96	114.7 12	40.4 39.0 7.12 37.6 7.20	132.7	1249.4 1248.0 1246.6	7.29
303 302 301	70.0 69.0 68.0	74.0	1218.9 6.96 1217.6 7.03 1216.2 7.11	91.4	1227.7 1226.3 1225.0	7.20	110.5 108.4 106.3	36.2 7.28 34.8 7.37 33.4 7.45	126.3	1245.1 1243.8 1242.3	7.54
300 299 298	67.0 66.0 65.0	68.3	1214.9 7.20 1213.6 7.28 1212.3 7.36	85.3	1223.6 1222.2 1220.8	7.45	102.1 12	32.0 7.54 30.7 7.62 29.4 7.70	119.9	1240.9 1239.4 1238.0	7.80
297 296 295	64.0 63.1 62.1	62.4	1211.0 7.44 1209.7 7.53 1208.4 7.61	79.2	1219.4 1218.0 1216.6	7.70	96.0 12:	28.0 7.80 26.6 7.89 25.2 7.99	113.4	1236.6 1235.2 1233.8	8.07
294 293 292	61.2 60.2 59.3	56.7	1207.1 7.70 1205.8 7.79 1204.5 7.88	73.1	1215.3 1213.9 1212.6	7.99	89.9 12	23.9 8.07 22.5 8.16 21.1 8.26	107.0	1232.4 1231.0 1229.5	8.35
291 290 289	58.4 57.5 56.7	50.8	1203.1 7.98 1201.8 8.08 1200.5 8.17	67.0	1211.3 1209.9 1208.6	8.27	83.6 12	19.7 8.36 18.3 8.46 16.9 8.55	100.6	1228.0 1226.6 1225.1	8.65
288 287 286	55.8 54.9 54.1	44.9	1199.1 8.26 1197.8 8.35 1196.5 8.45	61.0	1207.3 1206.0 1204.6	8.56	77.4 12	15.5 8.65 14.1 8.75 12.7 8.86	94.1	1223.6 1222.2 1220.8	8.96
285 284 283	53.2 52.4 51.6	39.0	1195.2 8.55 1193.8 8.65 1192.5 8.75	54.9	1203.2 1201.9 1200.5	8.87	73.2 12: 71.1 120 69.1 120	11.3 8.96 09.9 9.07 08.5 9.18	87 8	1219.4 1218.0 1216.5	928 1
282 281 280	50.8 50.0 49.19	35.0 33.1 31.1	1191.2 8.85 1189.9 8.96 1188.6 9.06	50.9 48.8 46.8	1199.2 1197.8 119 6.4	9.08 9.20 9.30	67.0 120 65.0 120 62.9 120	07.1 9.29 05.7 9.40 04.4 9.51	83.5 81.4 79.3	1215.1 1213.7 1212.3	9.50 9.62 9.74
279 278 277	48.41 47.64 46.88	27.3	1187.3 9.17 1186.0 9.28 1184.6 9.40	44.7 42.7 40.7	1195.0 1193.7 1192.3	9.41 9.52 9.63	60.9 120 58.8 120 56.8 120	03.0 9.62 01.7 9.74 00.3 9.86	75.0	1211.0 1209.6 1208.2	9.97

abr.	Pounds lare		1.72		:	1.73		-	1.74			1.75	
Temperature, Degrees Fahr	Pressure, Pou per Square Inch.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.
324 323 322	94.8 93.5 92.2	191.0	1284.5 1283.0 1281.6	6.12	213.5 211.2 208.9	1294.5 1293.0 1291.5	6.20 6.26 6.33	231.6	1304.7 1303.1 1301.5	6.33 6.40 6.47	252.1	1314.7 1313.2 1311.6	6.47 6.54 6.60
321 320 319	90.9 89.6 88.3	186.5 184.3 182.0	1280.1 1278.7 1277.3	6.25 6.32 6.38	204.3	1290.0 1288.5 1287.0	6.40 6.47 6.54	226.9 224.5 222.2	1299.9 1298.4 1296.8	6.55 6.61 6.69	245.0	1310.1 1308.5 1306.9	6.67 6.75 6.82
318 317 316	85.9	177.6	1275.9 1274.5 1273.0	6.45 6.53 6.60	197.4	1285.5 1284.0 1282.5	6.60 6.67 6.74	219.9 217.5 215.1	1295.3 1293.8 1292.3	6.76 6.83 6.90	238.0	1305.4 1303.9 1302.4	6.89 6.97 7.04
315 314 313	83.4 82.3 81.1	171.0	1271.6 1270.1 1268.6		192.8 190.5 188.2	1281.0 1279.5 1278.0	6.81 6.89 6.98	210.4	1290.7 1289.2 1287.6	6.98 7.05 7.13	230.9	1300.8 1299.3 1297.8	7.12 7.20 7.28
312 311 310	79.9 78.8 77.6	164.3	1267.1 1265.7 1264.2	6.89 6.97 7.04	183.6	1276.5 1275.0 1273.5	7.05 7.13 7.20	205.6 203.2 200.8	1286.1 1284.5 1283.0	7.21 7.29 7.37	223.7	1296.3 1294.8 1293.3	7.36 7.44 7.53
309 308 307	76.5 75.4 74.3	157.6	1262.7 1261.2 1259.8	7.12 7.20 7.28	179.0 176.7 174.4	1272.0 1270.5 1269.0	7.28 7.36 7.44	198.5 196.1 193.7	1281.5 1280.0 1278.4	7.45 7.54 7.62	219.0 216.7 214.3	1291.8 1290.3 1288.8	7.61 7.69 7.78
306 305 304	73.2 72.2 71.1	153.1 150.9 148.6	1258.3 1256.8 1255.3	7.36 7.44 7.52	169.8	1267.5 1266.0 1264.5	7.52 7.61 7.70	191.4 189.1 186.7	1276.9 1275.4 1273.9	7.70 7.79 7.88	209.5	1287.2 1285.6 1284.0	7.87 7.96 8.05
303 302 301	70.0 69.0 68.0	144.2	1253.9 1252.4 1251.0	7.61 7.70 7.79	163.0	1262.9 1261.4 1259.9	7.79 7.88 7.97	184.4 182.1 179.8	1272.3 1270.8 1269.3	7.97 8.06 8.15	202.3	1282.4 1280.8 1279.2	8.15 8.24 8.34
300 299 298	67.0 66.0 65.0	137.7	1249.5 1248.1 1246.6	7.88 7.97 8.06	156.1	1258.4 1256.9 1255.4	8.06 8.15 8.25	177.4 175.1 172.8	1267.8 1266.2 1264.7	8.24 8.34 8.43	197.5 195.1 192.7	1277.6 1276.0 1274.5	8.43 8.52 8.61
297 296 295	64.0 63.1 62.1	131.0	1245.1 1243.6 1242.2	8.15 8.24 8.34	149.3	1253.9 1252.4 1250.9	8.34 8.44 8.53	168.2	1263.2 1261.7 1260.1	8.53 8.63 8.73	187.9	1272.9 1271.4 1269.9	8.71 8.81 8.91
294 293 292	61.2 60.2 59.3	126.7 124.5 122.2	1240.7 1239.2 1237.7	8.43 8.53 8.63	144.7 142.5 140.3	1249.4 1247.9 1246.5	8.63 8.73 8.83	163.6 161.3 158.9	1258.6 1257.1 1255.6	8.83 8.93 9.03	180.8	1268.4 1266.9 1265.3	9.02 9.12 9.23
291 290 289	58.4 57.5 56.7	120.0 118.0 115.8	1236.2 1234.8 1233.4	8.73 8.84 8.94	135.7	1245.0 1243.5 1242.1	8.93 9.04 9.15	154.3	1254.0 1252.5 1251.0	9.14 9.24 9.35	176.0 173.6 171.3	1263.8 1262.2 1260.7	9.34 9.46 9.57
288 287 286	55.8 54.9 54.1	111.4	1232.0 1230.6 1229.2	9.04 9.15 9.26	131.2 129.0 126.8	1240.7 1239.3 1237.9	9.25 9.36 9.47	147.3	1249.5 1248.0 1246.5	9.46 9.57 9.68	166.6	1259.1 1257.6 1256.1	9.67 9.79 9.90
285 284 283	53.2 52.4 51.6	107.0 104.8 102.7	1227.7 1226.3 1224.8	9.37 9.49 9.60	122.3	1236.4 1235.0 1233.5	9.58 9.70 9.82	140.4	1245.0 1243.5 1242.0	9.80 9.92 10.04	159.4	1254.5 1253.0 1251.4	10.15 i
282 281 280	50.8 50.0 49.19		1223.4 1222.0 1220.6		117.8 115.6 113.4	1232.0 1230.5 1229.0	9.94 10.06 10.18	133.5	1240.5 1239.1 1237.7	10. 2 9	154.6 152.3 149.9	1249.8 1248.2 1246.7	10.39 10.51 10.64
279 278 277	48.41 47.64 46.88	91.8	1219.2 1217.8 1216.4	10.19	111.1 108.9 106.7	1227.5 1226.1 1224.6	10.30 10.43 10.56	126.7	1236.3 1234.8 1233.3	10.67	145.1	1245.1 1243.6 1242.1	10.90 l

ahr.	Pounds tare		1.68		1.69			1.70		1.71	
Temperature, Degrees Fahr.	Pressure, Pour per Square Inch.	Quality.	Heat Contents. Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Contents. Specific Volume.	Quality.	Heat Contents.	Volume.
276 275 274	46.13 45.39 44.67	23.3 21.3 19.3	1183.4 9.51 1182.1 9.62 1180.8 9.73	36.6	1191.0 1189.6 1188.3	9.75 9.87 10.00	54.7 52.6 50.5	1199.0 9.98 1197.6 10.10 1196.2 10.22	70.9 68.8 66.7	1206.8 10. 1205.4 10. 1204.0 10.	34
273 272 271	43.95 43.24 42.54		1179.6 9.88 1178.3 9.97 1177.0 10.10	30.5	1187.0 1185.7 1184.3	10.23	48.4 46.3 44.2	1194.8 10.34 1193.4 10.47 1192.0 10.60	64.5 62.4 60.3	1202.6 10. 1201.2 10. 1199.8 10.	73
270 269 268	41.84 41.16 40.49	11.5 9.5 7.5	1175.7 10.23 1174.4 10.33 1173.1 10.48	24.3	1183.0 1181.7 1180.3	10.61	42.1 40.0 38.0	1190.6 10.74 1189.2 10.88 1187.9 11.01	58.2 56.1 54.0	1198.4 10. 1197.0 11. 1195.7 11.	13
267 266 265	39.83 39.17 38.53	5.6 3.6 1.6	1171.8 10.61 1170.5 10.75 1169.2 10.89	20.3 18.3 16.2	1178.9 1177.5 1176.1	11.02	36.0 33.9 31.9	1186.5 11.14 1185.2 11.29 1183.8 11.42	51.9 49.8 47.7	1194.3 11. 1192.9 11. 1191.6 11.	55
264 263 262	37.89 37.26 36.64	9997 9987 9976	1167.8 1166.5 11.20 1165.1	14.2 12.1 10.1	1174.8 1173.5 1172.2	11.44	29.8 27.7 25.7	1182.5 11.57 1181.1 11.70 1179.8 11.86	45.5 43.4 41.3	1190.2 11. 1188.8 12. 1187.5 12.	00
261 260 259	36.02 35.42 34.83	9966 9955 9945	1163.9 11.53 1162.6 11.70 1161.3 11.87	6.0	1170.9 1169.6 1168.3	11.87	23.6 21.6 19.5	1178.4 12.01 1177.1 12.16 1175.8 12.31	39.3 37.2 35.1	1186.1 12. 1184.8 12. 1183.5 12.	46
258 257 256	34.24 33.66 33.09	9934 9925 9914	1159.9 12.05 1158.6 12.24 1157.3 12.42	0.0	1166.9 1165.6 1164.4	12.33	17.4 15.3 13.2	1174.4 1173.0 12.63 1171.7 12.80	33.0 30.9 28.8	1182.1 12. 1180.7 12. 1179.4 13.	95
255 254 253	32.53 31.97 31.42	9903 9893 9882	1156.0 12.61 1154.6 12.80 1153.4 13.01	9969	1163.1 1161.7 1160.4	12.90	11.0 8.9 6.8	1170.3 12.96 1168.9 13.13 1167.5 13.30	26.7 24.5 22.4	1178.0 13. 1176.6 13. 1175.2 13.	46
252 251 250	30.88 30.35 29.82	9873 9862 9852	1152.1 1150.8 1149.5 13.6	9948 9937 9927	1159.1 1157.8 1156.5	13.50	4.7 2.6 0.6	1166.1 13.47 1164.8 13.65 1163.5 13.83	20.3 18.1 16.0	1173.9 1172.6 14. 1171.2	00
249 248 247	29.30 28.79 28.29	9842 9831 9822	1148.2 13.83 1146.8 14.04 1145.5 14.26	9917 9906 9896	1155.2 1153.9 11 52 .6	14.15	9992 9981 9971	1162.3 14.04 1161.0 14.25 1159.7 14.48	13.9 11.7 9.6	1169.9 14. 1168.5 14. 1167.2 14.	54
246 245 244	27.80 27.31 26.83	9811 9801 9791	1144.2 14.49 1142.9 14.71 1141.6 14.94	9885 9875 9865	1151.3 1150.0 1148.6	14.82	9960 9949 9939	1158.4 14.71 1157.1 14.93 1155.7 15.17	7.5 5.3 3.1	1165.8 14. 1164.4 15. 1163.0 15.	11
243 242 241	26.35 25.88 25.42	9780 9771 9760	1140.3 15.17 1139.0 15.41 1137.7 15.66	9844	1147.3 1146.0 1144.7	15.52	9928 9918 9907	1154.4 15.40 1153.0 15.64 1151.7 15.89	0.8 9992 9981	1161.5 15. 1160.0 15. 1158.7 16.	76
240 239 238	24.97 24.52 24.08	9750 9740 9730	1136.3 15.90 1135.0 16.16 1133.6 16.39	9824 9813 9803	1143.3 1142.0 1140.6	16.28	9897 9887 9876	1150.3 16.14 1149.0 16.40 1147.6 16.66	9971 9960 9950	1157.3 16.1 1156.0 16. 1154.6 16.	52
237 236 235	23.64 23.21 22.79	9710	1132.3 16.68 1131.0 16.95 1129.7 17.24	9783	1139.3 1138.0 1136.6	17.08	9856	1146.3 16.93 1144.9 17.21 1143.5 17.49	9928	1153.3 17.0 1151.9 17.1 1150.5 17.0	33
234 233 232	22.38 21.97 21.57	9689 9680 9669	1128.3 17.52 1127.0 17.80 1125.6 18.09	9752	1135.2 1133.9 1132.5	17.93	9824	1142.1 17.78 1140.8 18.07 1139.4 18.36	9897	1149.1 1147.7 1146.3	20
231 230 229	21.17 20.78 20.40	9659 9649 9639	1124.3 18.39 1123.0 18.69 1121.6 19.01	9721	1131.2 1129.9 1128.5	18.83	9803 9793 9782	1138.1 1136.8 1135.4 19.29	9876 9865 9854	1145.0 18.1 1143.7 19.1 1142.3 19.4	11

₹,

h.	spun	-	1.72	1.	73	1.74		1.75	
Temperature, Degrees Fahr	Pressure, Pounds per Square Inch.	Quality.	Heat Contents. Specific Volume.	Quality.	tents. Specific Volume.	Quality. Heat Contents.	Specific Volume.	Heat Con-	Specific Volume.
276 275 274	46.13 45.39 44.67	87.5 85.3 83.1	1215.0 10.44 1213.5 10.57 1212.1 10.70	102.1 122	23.2 10.69 21.8 10.81 20.3 10.96	122.1 1231.8 119.8 1230.4 117.5 1228.9	11.06 13	0.4 1240.6 8.0 1239.0 5.7 1237.5	11.30
273 272 271	43.95 43.24 42.54	81.0 78.8 76.6	1210.7 10.83 1209.3 10.97 1207.8 11.10	95.5 121	18.8 17.3 11.22 15.8 11.37	115.2 1227.4 113.0 1225.9 110.7 1224.4	11.33 13 11.48 13 11.61 12	3.3 1236.0 1.0 1234.5 8.6 1233.0	11.72
270 269 268	41.84 41.16 40.49	74.5 72.3 70.1	1206.4 1204.9 11.38 1203.5 11.52	88.8 121	4.4 3.0 11.65 11.80	108.4 1222.9 106.1 1221.4 103.8 1220.0	11.90 12	6.2 1231.5 3.9 1230.0 1.5 1228.4	12.18
267 266 265	39.83 39.17 38.53	68.0 65.8 63.6	1202.1 11.67 1200.7 11.81 1199.3 11.96	82.1 120	10.1 11.95 18.6 12.10 17.2 12.26	101.6 1218.5 99.3 1217.1 97.0 1215.6	12.37 11	9.1 1226.9 6.8 1225.4 4.5 1223.9	12.64
264 263 262	37.89 37.26 36.64	61.5 59.4 57.2	1197.9 12.11 1196.5 12.27 1195.1 12.42	75.5 120	05.8 12.41 04.3 12.56 02.9 12.73	94.8 1214.2 92.5 1212.7 90.2 1211.3	12.70 11 12.85 10 13.01 10	2.1 1222.4 9.8 1220.9 7.5 1219.4	13.14
261 260 259	36.02 35.42 34.83	55.0 52.8 50.6	1193.7 12.59 1192.3 12.75 1190.9 12.90	68.8 120	01.5 12.90 00.1 13.07 08.7 13.24	88.0 1209.8 85.5 1208.3 83.3 1206.8	13.20 10 13.36 10 13.54 10	$\begin{bmatrix} 5.1 & 1217.9 \\ 2.7 & 1216.5 \\ 0.4 & 1215.0 \end{bmatrix}$	13.48 13.65 13.82
258 257 256	34.24 33.66 33.09	48.4 46.2 44.0	1189.5 13.08 1188.1 13.25 1186.7 13.41	62.1 119	07.3 13.40 05.9 13.58 04.4 13.76	81.0 1205.3 78.7 1203.8 76.4 1202.4	13.89 9	8.1 1213.5 5.8 1212.0 3.4 1210.5	14.19
255 254 253	32.53 31.97 31.42	41.9 39.7 37.5	1185.3 13.59 1183.9 13.78 1182.5 13.95	55.5 119	3.0 13.94 1.5 14.12 0.1 14.31	74.1 1200.9 71.8 1199.4 69.5 1197.9	14.44 8	1.1 1209.0 8.7 1207.5 6.3 1206.0	14.76
252 251 250	30.88 30.35 29.82	35.3 33.1 31.0	1181.1 14.14 1179.7 14.33 1178.3 14.51	49.0 118	8.7 14.50 17.2 14.70 5.8 14.90	67.2 1196.5 64.9 1195.0 62.6 1193.5	15.02 8	4.0 1204.5 1.6 1203.0 9.3 1201.5	15.35
249 248 247	29.30 28.79 28.29	28.8 26.6 24.4	1177.0 14.70 1175.6 14.90 1174.2 15.09	42.3 118	4.4 15.09 3.0 15.29 1.6 15.49	60.3 1192.0 58.0 1190.6 55.7 1189.1	15.63 7	7.0 1200.0 4.6 1198.5 2.2 1197.0	15.99
246 245 244	27.80 27.31 26.83	22.2 20.0 17.8	1172.8 15.29 1171.4 15.49 1170.0 15.70	35.7 117	0.1 15.70 8.7 15.90 7.2 16.11	53.4 1187.6 51.1 1186.1 48.8 1184.7	16.26 6	9.9 1195.5 7.5 1194.0 5.1 1192.5	16.62
243 242 241	26.35 25.88 25.42	15.7 13.5 11.3	1168.6 15.90 1167.2 16.12 1165.8 16.33	28.8 117	5.7 16.32 4.3 16.55 2.8 16.78	46.4 1183.2 44.1 1181.7 41.8 1180.2	16.93 6	2.7 1191.0 0.4 1189.5 8.0 1188.0	17.30
240 239 238	24.97 24.52 24.08		1164.4 16.56 1163.0 16.79 1161.6 17.00	21.9 117	1.4 17.00 0.0 17.23 8.6 17.45	39.5 1178.8 37.2 1177.4 35.0 1176.0	17,61 5	5.6 1186.5 3.3 1185.0 1.0 1183.5	18.02
237 236 235	23.64 23.21 22.79	0.1	1160.2 17.23 1158.9 17.46 1157.4 17.75	15.2 116	7.2 17.69 5.8 17.94 4.4 18.17	32.8 1174.6 30.5 1173.1 28.3 1171.6	18.34 4	8.6 1182.0 6.2 1180.5 3.8 1179.0	18.78
234 233 232	22.38 21.97 21.57	9980 9969 9958	1156.0 18.04 1154.6 18.33 1153.2 18.63	10.7 116 8.5 116 6.3 116	3.0 18.42 1.6 18.67 0.2 18.93	26.0 1170.2 23.7 1168.7 21.4 1167.3	18.84 19.10 19.39 3	1.5 9.1 1176.0 6.8 1174.6	19.30 19.57 19.84
231 230 229	21.17 20.78 20.40	9937	1151.9 18.94 1150.6 19.25 1149.2 19.57	1.8 115	$\begin{array}{c c} 8.8 & 19.19 \\ 7.4 & 19.45 \\ 6.0 & 19.71 \end{array}$	19.1 1165.8 16.9 1164.4 14.7 1163.0	19.92 3	4.5 2.2 1171.7 0.0 1170.3	20.40

apr.	Pounds lare		1.68	1.69)		1.70		1.71	
Temperature, Degrees Fahr.	Pressure, Pour per Square Inch.	Quality.	Heat Contents. Specific Volume.	Quality.	Specific Volume.	Quality.	Heat Contents. Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.
228 227 226	20.02 19.64 19.28	9628 9619 9609	1120.2 19.32 1118.9 19.64 1117.6 19.97	9700 1127 9690 1125 9680 1124	.1 19.47 .8 19.79 .4 20.12	9772 9762 9752	1134.0 1132.7 1131.3 20.2	9843 9833 9823	1140.8 1139.5 1138.1	20.08
225 224 223	18.91 18.56 18.21	9599 9589 9579	1116.3 20.31 1114.9 20.65 1113.6 21.01	9670 1123 9660 1121 9650 1120	.1 20.46 .7 20.81 .4 21.16	9741 9731 9721	1129.9 20.6 1128.5 20.9 1127.2 21.3	9812 9802 9792	1136.8 1135.4 1134.0	21.11
222 221 220	17.86 17.52 17.19	9569 9559 9549	1112.2 21.37 1110.9 21.73 1109.5 22.10	9640 1119 9630 1117 9620 1116	.0 21.53 .7 21.89 .3 22.26	9711 9700 9690	1125.8 21.6 1124.5 22.0 1123.1 22.4	9781 9771	1132.6 1131.3 1129.9	21.84 22.21 22.59
219 218 217	16.86 16.54 16.22	9539 9529 9519	1108.1 22.47 1106.7 22.86 1105.4 23.25	9609 1114 9599 1113 9589 1112	.9 22.64 .5 23.03 .1 23.43	9679 9669 9659	1121.7 1120.3 23.2 1118.9 23.6	9750 9739 9729	1128.5 1127.0 1125.6	22.97 23.36 23.77
216 215 214	15.90 15.60 15.29	9509 9499 9489	1104.023.66 1102.724.07 1101.324.49	9569 1109	23.83 24.25 3.0 24.67	9649 9639 9628	1117.5 24.0 1116.2 24.4 1114.8 24.8	2 9708	1124.3 1122.9 1121.5	24.18 24.60 25.03
213 212 211	14.99 14.70 14.41	9479 9469 9460	1100.0 24.92 1098.6 25.36 1097.3 25.82	9549 1106 9539 1103 9529 1103	3.7 25.10 25.54 3.9 26.01	9618 9608 9598	1113.4 25.2 1112.0 25.7 1110.6 26.1	9688 9677 9667	1120.1 1118.7 1117.3	25.47 25.92 26.38
210 209 208	14.13 13.85 13.57	9450 9441 9431	1095.9 26.27 1094.4 26.74 1093.1 27.22	9519 1102 9510 1101 9500 1099	26.46 26.93 27.42	9588 9579 9568	1109.2 26.6 1107.8 27.1 1106.4 27.6	9647	1115.9 1114.5 1113.1	27.32
207 206 205	13.30 13.03 12.77	9421 9411 9401	1091.7 27.71 1090.3 28.21 1088.9 28.73	9489 1098 9479 1097 9469 1098	3.4 27.91 3.0 28.42 3.6 28.93	9558 9548 9537	1105.0 28.1 1103.6 28.6 1102.2 29.1	2 9616	1111.7 1110.3 1108.9	28.83
204 203 202	12.51 12.26 12.01	9391 9381 9372	1087.6 29.25 1086.2 29.78 1084.9 30.34	9459 1094 9449 1092 9440 1091	2 29.46 30.00 .5 30.56	9527 9517 9507	1100.8 1099.4 1098.1 30.2	9595 9585 9575	1107.5 1106.1 1104.7	29.89 30.43 30.99
201 200 199	11.77 11.53 11.29	9362 9352 9342	1083.5 30.88 1082.1 31.44 1080.7 32.02	9429 1090 9419 1088 9409 1087	31.11 31.67 31.67 32.25	9497 9487 9477	1096.7 31.3 1095.3 31.8 1093.8 32.4	9554	1103.3 1101.9 1100.4	31.55 32.12 32.71
198 197 196	11.06 10.83 10.61	9333 9323 9312	1079.3 32.60 1077.8 33.20 1076.4 33.81	9400 1085 9390 1084 9379 1083	32.83 33.44 34.06	9467 9457 9446	1092.5 33.0 1091.0 33.6 1089.5 34.3	7 9524	1099.1 1097.5 1096.1	33.30 33.91 34.54
195 194 193	10.39 10.17 9.96	9303 9293 9284	1075.1 34.45 1073.7 35.10 1072.3 35.77	9370 1081 9360 1086 9350 1078	.6 34.70 0.2 35.35 36.03	9437 9426 9416	1088.2 34.9 1086.7 35.6 1085.4 36.2	9503 9493 9483	1094.7 1093.3 1091.9	35.19 35.85 36.54
192 191 190	9.75 9.54 9.34	9273 9263 9254	1070.9 36.45 1069.5 37.15 1068.1 37.87	9329 1076	7.4 36.71 5.0 37.42 6.6 38.14	9406 9395 9386	1083.9 36.9 1082.5 37.6 1081.1 38.4	9472 9462 9452	1090.4 1089.0 1087.6	37.95
189 188 187	9.14 8.95 8.76	9244 9234 9224	1066.8 38.59 1065.3 39.33 1063.9 40.08	9310 1073 9300 1071 9290 1070	3.2 38.87 .8 39.61 0.4 40.36	9376 9365 9355	1079.7 1078.3 1076.9 40.6	9431	1086.2 1084.7 1083.3	39.42 40.17 40.93
186 185 184	8.57 8.38 8.20	9214 9204 9194	1062.5 40.85 1061.1 41.63 1059.7 42.45	9270 1067	0 41.14 6 41.93 6.1 42.75	9345 9335 9325	1075.4 41.4 1074.0 42.2 1072.6 43.0	2 9400	1081.9 1080.5 1079.0	42.52
183 182 181	8.02 7.85 7.68	9185 9175 9166	1058.3 43.28 1056.9 44.14 1055.4 45.03	9250 1064 9240 1063 9231 1061	.7 43.59 .3 44.45 .8 45.35	9315 9305 9295	1071.2 43.8 1069.8 44.7 1068.2 45.6	9380 7 9370 7 9360	1077.6 1076.2 1074.7	45 08

e, shr.	unds e		1.72		1.73			1.74			1.75	
Temperature, Degrees Fahr.	Pressure, Pounds per Square Inch.	Quality.	Heat Contents. Specific	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.
228 227 226	20.02 19.64 19.28	9915 9905 9894	1147.7 19.9 1146.4 20.3 1145.0 20.4	3 9977	1154.6 1153.2 1151.8	20.37	10.1	1161.5 1160.0 1158.6	20.77	27.7 25.4 23.0	1168.8 1167.4 1166.0	21.29
225 224 223	18.91 18.56 18.21	9883 9873 9863	1143.6 20.1 1142.2 21.1 1140.9 21.0	7 9944	1150.4 1149.0 1147.7	21.06 21.42 21.78	5.6 3.4 1.1	1157.2 1155.8 1154.4	21.37 21.68 22.00	20.7 18.3 16.0	1164.5 1163.0 1161.6	22.19
222 221 220	17.86 17.52 17.19	9852 9842 9831	1139.5 1138.1 22.3 1136.7	7 9912	1146.3 1144.9 1143.5	22.16 22.53 22.91	9994 9983 9972	1153.0 1151.6 1150.2	22.69	13.7 11.3 9.0	1160.1 1158.6 1157.2	23.17
219 218 217	16.86 16.54 .16.22		1135.3 1133.8 23.3 1132.4	3 9879	1142.1 1140.6 1139.2	23.30 23.70 24.11	9960 9950 9939	1148.8 1147.3 1145.9		6.6 4.2 1.9	1155.7 1154.2 1152.8	24.16
216 215 214	15.90 15.60 15.29	9788 9778 9767	1131.0 24.3 1129.6 24.3 1128.2 25.3	8 9848	1137.8 1136.4 1135.0	24.95	9928 9917 9906	1144.5 1143.1 1141.7	24.70 25.13 25.57	9998 9987 9976	1151.3 1149.8 1148.4	25.31
213 212 211	14.99 14.70 14.41	9757 9746 9737	1126.8 25.6 1125.4 26.1 1124.0 26.5	0 9816	1133.6 1132.2 1130.8	25.83 26.29 26.76	989 6 9885 9875	1140.3 1138.9 1137.5	26.02 26.47 26.95	9965 9955 9944	1147.0 1145.6 1144.2	26.66
210 209 208	14.13 13.85 13.57	9726 9716 9705	1122.6 1121.2 27.8 1119.8 28.6	9795 2 9785 1 9774	1129.3 1127.9 1126.5	27.23 27.71 28.21	9864 9854 9843	1136.0 1134.6 1133.1			1142.7 1141.2 1139.8	28.10
207 206 205	13.30 13.03 12.77	9695 9684 9674	1118.4 28.5 1116.9 29.0 1115.5 29.5	1 9763 3 9753 6 9742	1125.0 1123.6 1122.2	29.24	9832 9821 9810	1131.7 1130.3 1128.8	28.92 29.44 29.98	9900 9889 9878	1138.4 1136.9 1135.5	29.65
204 203 202	$^{12.51}_{12.26}_{12.01}$	9663 9653 9643	1114.1 30.1 1112.7 30.6 1111.3 31.5	0 9731 5 9720 1 9711	1120.7 1119.3 1117.9	30.31 30.86 31.43	9799 9788 9778	1127.4 1125.9 1124.5	30.52 31.08 31.65	9867 9856 9846	1134.0 1132.6 1131.2	31.29
201 200 199	11.77 11.53 11.29	9632 9622 9611	1109.9 31.7 1108.4 32.3 1107.0 32.9	5 9689	1116.5 1115.0 1113.6	32.58	9768 9757 9746	1123.1 1121.6 1120.2	32.22 32.80 33.40	9835 9824 9813	1129.7 1128.2 1126.8	33.03
198 197 196	11.06 10.83 10.61	9601 9591 9580	1105.6 33.5 1104.1 34.1 1102.6 34.7	5 9658	1112.2 1110.7 1109.2	33.77 34.39 35.03	9736 9725 9714	1118.8 1117.2 1115.8	34.01 34.63 35.27	9803 9792 9781	1125.4 1123.8 1122.3	34.87
195 194 193	10.39 10.17 9.96	9570 9559 9549	1101.3 35.4 1099.8 36.1 1098.4 36.7	9637 1 9626 9 9616	1107.8 1106.3 1104.9	36.36	9704 9693 9682	1114.3 1112.9 1111.5	35.93 36.61 37.31	9770 9759 9749	1120.9 1119.4 1118.0	36.86
192 191 190	9.75 9.54 9.34	9539 9528 9518	1097.0 37.5 1095.5 38.2 1094.1 38.9	0 9605 2 9594 5 9584	1103.5 1102.0 1100.6	38.48	9671 9660 9650	1110.0 1108.5 1107.1	38.02 38.75 39.49	9738 9726 9716	1116.5 1115.0 1113.6	39.01
189 188 187	9.14 8.95 8.76	9508 9497 9487	1092.7 39.6 1091.2 40.4 1089.8 41.2	9 9574 5 9563 2 9552	1099.2 1097.7 1096.3	39.97 40.73 41.50	9639 9628 9618	1105.7 1104.2 1102.7	41.01		1112.1 1110.6 1109.2	41.29
186 185 184	8.57 8.38 8.20		1088.3 42.0 1086.9 42.8 1085.4 43.6	1 9531	1094.8 1093.4 1091.9	43.11	9607 9596 9585	1101.2 1099.8 1098.3	43.40	9672 9662 9650	1107.7 1106.3 1104.7	43.70
183 182 181	8.02 7.85 7.68	9435	1084.0 44.5 1082.6 45.3 1081.1 46.3	9 9499	1090.4 1089.0 1087.5	45.70	9575 9565 9555	1096.9 1095.4 1093.9	45.12 46.02 46.94	9640 9630 9619	1103.3 1101.8 1100.3	45.42 46.33 47.26

ahr.	e e		1.68		1.69	1.70	1.71
Temperature, Degrees Fahr.	Pressure, Pounds per Square Inch.	Quality.	Heat Contents. Specific Volume.	Quality.	Heat Contents. Specific Volume.	Quality. Heat Contents. Specific Volume.	Quality. Heat Contents. Specific Volume.
180 179 178	7.51 7.35 7.19	9156 9146 9137	1054.0 45.96 1052.6 46.83 1051.2 47.78	9220 9211 9201	1060.4 46.29 1059.0 47.16 1057.6 48.12	9275 1065.447.4	9 9340 1071.747.82
177	7.03	9127	1049.8 48.74	9191	1056.1 49.08	9255 1062.5 49.4	2 9320 1068.9 49.77
176	6.87	9117	1048.3 49.69	9181	1054.7 50.10	9245 1061.0 50.4	9309 1067.4 50.7
175	6.71	9107	1046.9 50.7	9171	1053.3 51.1	9235 1059.6 51.4	9299 1065.9 51.8
174	6.56	9098	1045.5 51.8	9161	1051.8 52.1	9225 1058.2 52.5	9289 1064.5 52.9
173	6.42	9088	1044.1 52.8	9152	1050.4 53.2	9215 1056.7 53.5	9279 1063.1 53.9
172	6.27	9078	1042.7 53.8	9142	1049.0 54.2	9205 1055.3 54.6	9269 1061.6 55.0
171	6.13	9068	1041.2 55.0	9131	1047.5 55.3	9195 1053.8 55.7	9258 1060.1 56.1 1058.6 57.3 9238 1057.2 58.6
170	5.99	9058	1039.8 56.2	9122	1046.1 56.6	9185 1052.3 56.9	
169	5.85	9049	1038.3 57.4	9112	1044.6 57.8	9175 1050.9 58.2	
168	5.72	9040	1036.9 58.6	9103	1043.2 59.0	9165 1049.5 59.4	9228 1055.7 59.8
167	5.59	9029	1035.5 59.8	9092	1041.7 60.2	9155 1048.0 60.6	9218 1054.3 61.0
166	5.46	9020	1034.0 61.1	9082	1040.3 61.5	9145 1046.5 61.9	9208 1052.8 62.3
165	5.33	9010	1032.6 62.3	9073	1038.8 62.7	9135 1045.1 63.1	9198 1051.3 63.6 9188 1049.9 64.9 9177 1048.4 66.2
164	5.21	9000	1031.1 63.5	9063	1037.4 64.0	9125 1043.6 64.4	
163	5.09	8991	1029.7 64.8	9053	1035.9 65.3	9115 1042.2 65.7	
162 161 160	4.969 4.852 4.738	8981 8971 8962	1028.3 66.2 1026.9 67.6 1025.4 69.2	9043 9033 9023	1034.5 66.6 1033.1 68.1 1031.6 69.7	9105 9095 9085 1037.8 70.1	9167 1046.9 67.6 9157 1045.5 69.0 9147 1044.0 70.6
159	4.626	8952	1023.9 70.6	9014	1030.1 71.1	9075 1036.3 71.6	9137 1042.5 72.1 9127 1041.0 73.7 9117 1039.6 75.3
158	4.517	8942	1022.5 72.2	9004	1028.6 72.7	9065 1034.8 73.2	
157	4.409	8933	1021.1 73.8	8994	1027.2 74.3	9056 1033.4 74.8	
156	4.303	8923	1019.6 75.4	8984	1025.8 75.9	9046 1031.9 76.4	9107 1038.1 77.0 9097 1036.6 78.6 9086 1035.1 80.3
155	4.200	8913	1018.1 77.0	8974	1024.3 77.5	9035 1030.4 78.1	
154	4.099	8903	1016.7 78.7	8964	1022.8 79.2	9025 1028.9 79.8	
153	4.000	8894	1015.2 80.4	8955	1021.4 80.9	9015 1027.5 81.5	9076 1033.6 82.0
152	3.903	8883	1013.8 82.2	8944	1019.9 82.7	9005 1026.0 83.3	9066 1032.1 83.9
151	3.808	8873	1012.3 84.0	8934	1018.4 84.6	8995 1024.5 85.2	9055 1030.6 85.8
150	3.715	8864	1010.8 85.9	8925	1017.0 86.5	8985 1023.0 87.1	9046 1029.1 87.7
149	3.624	8854	1009.4 87.8	8915	1015.4 88.4	8975 1021.5 89.0	9035 1027.6 89.6
148	3.535	8845	1007.9 89.9	8905	1014.0 90.5	8965 1020.1 91.1	9026 1026.2 91.7
147	3.447	8835	1006.4 91.9	8895	1012.5 92.5	8955 1018.6 93.1	9015 1024.6 93.8
146	3.361	8825	1005.0 94.0	8885	1011.0 94.6	8945 1017.1 95.3	9005 1023.2 95.9
145	3.278	8815	1003.5 96.1	8875	1009.5 96.7	8935 1015.6 97.4	8995 1021.6 98.0
144	3.196	8805	1002.0 98.3	8865	1008.1 98.9	8925 1014.1 99.6	8985 1020.1 100.3
143	3.116	8795	1000.5 100.5	8855	1006.6 101.2	8915 1012.6 101.1	8974 1018.6 102.6
142	3.037	8786	999.1 102.9	8845	1005.1 103.6	8905 1011.1 104.	8964 1017.1 105.0
141	2.960	8776	997.6 105.2	8836	1003.6 105.9	8895 1009.6 106.	1 8944 1014.1 109.8
140	2.885	8766	996.1 107.7	8826	1002.1 108.4	8885 1008.1 109.	
139	2.812	8757	994.6 110.2	8816	1000.6 111.0	8875 1006.6 111.	
138 137 136	2.740 2.669 2.600	8747 8737 8728	993.2 112.8 991.6 115.4 990.2 118.2	8806 8796 8786	999.1 113.5 997.6 116.2 996.1 119.0	8855 1003.6 117.	0 8913 1009.5 117.7
135 134 133	2.467	8718 8708 8698	988.7 987.1 123.8 985.7 126.8	8766	994.6 993.1 124.7 991.6 127.7	8835 1000.6 122. 8825 999.0 125. 8815 997.5 128.	6 8894 1006.5 123.4 5 8883 1005.0 126.3 6 8873 1003.4 129.4

e,	Pounds tare		1.72		1.73			1.74		1.75	
Temperature, Degrees Fahr.	Pressure, Pour per Square Inch.	Quality.	Heat Contents. Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Contents.	Quality.	Heat Con- tents.	Specific Volume.
180 179 178	7.51 7.35 7.19	9414 9404 9394	1079.6 47.26 1078.1 48.15 1076.7 49.13	9469	1086.0 1084.5 1083.1	47.58 48.48 49.47	9543 9533 9523	1092.4 47. 1090.9 48. 1089.4 49.	31 959	8 1097.3	49.14
177 176 175	7.03 6.87 6.71	9384 9373 9363	1075.2 50.1 1073.7 51.1 1072.3 52.2	9448 9437 9427	1081.6 1080.1 1078.6	50.5 51.4 52.5	9512 9501 9491	1088.0 50.1 1086.4 51.1 1085.0 52.	3 956	5 1092.8	52.1
174 173 172	6.56 6.42 6.27	9353 9343 9332	1070.8 53.2 1069.4 54.3 1067.9 55.3	9417 9406 9396	1077.2 1075.7 1074.2	53.6 54.7 55.7	9480 9470 9459	1083.5 53. 1082.0 55. 1080.6 56.	0 953	34 1088.4	55.4
171 170 169	6.13 5.99 5.85	9322 9311 9301	1086.4 56.5 1064.9 57.7 1063.5 59.0	9385 9375 9364	1072.7 1071.2 1069.8	56.9 58.1 59.4	9448 9438 9427	1079.0 57. 1077.5 58. 1076.0 59.	5 950	1 1083.8	58.9
168 167 166	5.72 5.59 5.46	9291 9280 9270	1062.0 60.2 1060.5 61.4 1059.1 62.8	9354 9343 9333	1068.3 1066.8 1065.3	61.9	9417 9406 9396	1074.6 61. 1073.1 62. 1071.6 63.	3 940	39 1079.3	62.7
165 164 163	5.33 5.21 5.09	9260 9250 9240	1057.6 64.0 1056.1 65.3 1054.6 66.6	9323 9312 9302	1063.8 1062.3 1060.8	64.4 65.7 67.1	9385 9375 9364	1070.1 64. 1068.6 66. 1067.1 67.	2 943	37 1074.8	66.6
162 161 160	4.969 4.852 4.738	9229 9219 9209	1053.1 68.0 1051.7 69.5 1050.2 71.1	9291 9281 9271	1059.3 1057.9 1056.4	68.5 70.0	9354 9343 9333	1065.5 68. 1064.1 70. 1062.6 72.	4 940	5 1070.3	70.9
159 158 157	4.626 4.517 4.409	9199 9189 9179	1048.7 72.6 1047.2 74.2 1045.7 75.8	9261 9250 9240	1054.9 1053.4 1051.9		9322 9312 9302	1061.1 73. 1059.5 75. 1058.1 76.		73 1065.7	74.0 75.6 77.3
156 155 154	4.303 4.200 4.099	9168 9158 9147	1044.2 77.5 1042.7 79.1 1041.2 80.9	9230 9219 9208	1050.4 1048.9 1047.3	79.7	9291 9280 9269	1056.5 78. 1055.0 80. 1053.5 81.	2 934	11 1061.2	80.7
153 152 151	4.000 3.903 3.808	9137 9127 9116	1039.7 82.6 1038.2 84.4 1036.7 86.3	9198 9187 9177	1045.9 1044.3 1042.8	85.0	9259 9248 9237	1052.0 83. 1050.5 85. 1048.9 87.	5 930	09 1056.6	86.1
150 149 148	3.715 3.624 3.535	9106 9096 9086	1035.288.2 1033.790.2 1032.292.3	9167 9156 9146	1041.3 1039.8 1038.3	88.8 90.8 92.9	9227 9216 9206	1047.489. 1045.991. 1044.493.	4 927	77 1052.0	92.0
147 146 145	3.447 3.361 3.278	9075 9065 9054	1030.7 94.4 1029.2 96.5 1027.7 98.7	9135 9125 9114	1036.8 1035.3 1033.7	97.2	9195 9185 9174	1042.8 95. 1041.3 97. 1039.8 100	8 924	15 1047.4	98.5
144 143 142	3.196 3.116 3.037	9044 9034 9024	1026.2 100.9 1024.6 103.3 1023.1 105.7	9104 9093 9083	1032.2 1030.7 1029.2	103.9	9164 9153 9143	1038.3 102 1036.7 104 1035.2 107	. 6 92	12 1042.7	102.9 105.3 107.8
141 140 139	2.960 2.885 2.812	9003	1021.6 108.1 1020.1 110.6 1018.6 113.2	9062	1027.6 1026.1 1024.6	111.3	9121	1033.6 1032.1 1030.5 114	.0 918	31 1038.1	112.7
138 137 136	2.740 2.669 2.600	8983 8972 8962	1017.1 115.8 1015.5 118.5 1014.0 121.3	9042 9031 9021	1023.0 1021.5 1019.9	116.6 119.3 122.1	9101 9090 9080	1029.0 117 1027.4 120 1025.9 122	. 1 91	49 1033.4	120.9
135 134 133	2.533 2.467 2.403	8941	1012.5 124.3 1010.9 127.1 1009.4 130.2	9000	1018.4 1016.8 1015.3	125.1 128.0 131.1	9069 9058 9048	1024.4 125 1022.8 128 1021.2 131	.8 91	17 1028.7	126.7 129.6 132.8

e,	epuno e		1.68		1.69			1.70			1.71	
Temperature, Degrees Fahr.	Pressure, Pounds per Square Inch.	Quality.	Heat Contents. Specific	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con-	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.
132 131 130	2.341 2.280 2.220	8689 8679 8670	984.2 129. 982.7 133. 981.2 136.	0 8737	988.6	130.8 133.9 137.1	8805 8795 8786	996.01 994.51 993.01	34.7	8863 8853 8843	1001.9 1000.4 998.9	132.5 135.6 138.9
129 128 127	2.161 2.103 2.047	8660 8650 8641	979.7 978.2 976.7 146.	8708	984.1	140.4 143.9 147.3	8775 8766 8756	991.5 989.9 988.4	44.8	8833 8823 8813	995.8	142.3 145.8 149.3
126 125 124	1.992 1.938 1.886	8631 8621 8611	975.2 150. 973.7 153. 972.2 157.		979.5	151.0 154.7 158.5	8745 8735 8725	986.9 985.4 983.8	55.8	8803 8793 8782	992.7 991.2 989.7	153.0 156.8 160.6
123 122 121	1.835 1.785 1.737	8601 8591 8582	970.7 161. 969.1 165. 967.6 169.	5 8 648	976.5 974.9 973.4	162.5 166.7 170.9	8715 8705 8695	982.3 980.7 979.2	63.6 67.7 72.0	8772 8762 8752	988.2 986.6 985.1	164.6 168.8 173.1
120 119 118	1.689 1.642 1.597	8572 8562 8553	966.1 964.6 178. 963.1	4 8619	971.9 970.4 968.9	175.2 179.6 184.2	8685 8675 8665	977.7 976.2 974.7	76.3 80.8 85.4	8742 8732 8722	983.5 982.0 980.4	182.0
117 116 115	1.552 1.509 1.467	8543 8533 8523	961.6 960.0 958.5 197.	8599 8589 8579	967.4 965.8 964.3	193.8	8655 8645 8635	973.1 971.5 970.0	90.2 95.1 00.2	8711 8701 8691	978.9 977.3 975.8	196.4
114 113 112	1.426 1.386 1.347	8513 8503 8493	957.0 202. 955.5 207. 953.9 213.	8559	962.7 961.2 959.7	203.9 209.2 214.7	8625 8614 8604	968.5 967.0 965.4	10.5	8680 8670 8660	974.2 972.7 971.1	211.9
111 110 109	1.308 1.271 1.235	8483 8474 8463	952.4 950.9 949.4 230.	8539 8529 8518	958.2 956.6 955.1	220.3 226.2 232.2	8594 8584 8574	963.9 962.2 960.7	21.7 27.7 33.7	8649 8640 8629	969.6 968.0 966.4	229.1
108 107 106	1.200 1.165 1.131	8454 8444 8434	947.8 236. 946.3 243. 944.7 250.	8509 8499 8489	953.5 952.0 950.4	244.9	8564 8554 8544	959.12 957.6 956.0	46.5	8619 8608 8598	964.8 963.3 961.7	248.1
105 104 103	1.098 1.066 1.035	8424 8414 8405	943.2 256. 941.6 263. 940.1 271.	8469	948.8 947.2 945.7	265.5	8534 8523 8513	954.5 952.9 951.4	67.2	8588 8578 8568	960.1 958.5 957.0	268.9
102 101 100	1.005 0.975 0.946	8395 8385 8375	938.5 937.0 935.4 293.	8439	944.1 942.6 941.0	287.9	8503 8494 8483	949.8 948.2 946.6	82.0 89.7 97.6	8558 8548 8537	955.4 953.8 952.2	283.8 291.6 299.5
99 98 97	0.918 0.891 0.864	8365 8356 8346	933.9 301.9 932.3 310.9 930.8 318.	8419 8409 8399	939.5 937.9 936.4	303.8 312.2 320.9	8473 8463 8453	945.030 943.43 941.93	14.2	8527 8517 8507	950.6 949.0 947.5	316.2
96 95 94	0.838 0.813 0.788	8336 8326 8316	929.3 327.9 927.8 337.9 926.2 346.	8380	934.8 933.3 931.7	330.0 339.2 348.8	8443 8433 8423	940.433 938.834 937.23	41.4	8497 8486 8476	946.0 944.4 942.8	343.5
93 92 91	0.764 0.741 0.718	8307 8297 8287	924.6 356.4 923.0 366.6 921.5 377.4	8350	930.1 928.5 927.0	358.7 369.1 379.8	8413 8403 8393	935.736 934.137 932.538	71.4	8466 8456 8446	941.3 939.6 938.0	373.7
90 89 88	0.696 0.675 0.654	8277 8267 8257	919.9 388.4 918.3 399.6 916.7 411.5	8320	925.4 923.8 922.2	402.2	8383 8373 8362	930.9 929.3 927.7	04.7	8435 8425 8415	936.4 934.8 933.1	407.3
87 86 85	0.633 0.613 0.594	8248 8238 8228	915.2 423. 913.6 435.0 912.0 447.0	8290	920.6 919.0 917.4	437.7	8353 8342 8332	926.1 924.5 922.9	40.5	8405 8395 8384	931.6 930.0 928.3	443.2

e,	Pounds		1.72			1.73			1.74		1	1.75	
Temperature, Degrees Fahr.	Pressure, Pour per Square Inch.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con-	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.
132 131 130	2.341 2.280 2.220	8921 8911 8901	1007.8 1006.3 1004.8	133.4 136.5 139.8	8980 8969 8959	1013.7 1012.2 1010.7	134.2 137.4 140.7	9038 9027 9017	1019.6 1018.1 1016.6	138.3	9096 9085 9075	1025.6 1024.0 1022.5	139.2
129 128 127	2.161 2.103 2.047	8891 8881 8870	1003.2 1001.7 1000.2	143.2 146.7 150.3	8949 8938 8928	1009.1 1007.6 1006.1	144.2 147.7	9006 8996 8985	1015.0 1013.4 1011.9	148.6	9064 9054 9043	1020.9 1019.3 1017.8	149.6
126 125 124	1.992 1.938 1.886	8860 8850 8839	998.6 997.1 995.5		8917 8907 8896	1004.5 1003.0 1001.3	158.8	8975 8964 8953	1010.3 1008.8 1007.2	159.8	9032 9021 9011	1016.2 1014.7 1013.0	160.9
123 122 121	1.835 1.785 1.737	8829 8819 8809	994.0 992.4 990.9	165.7 169.9 174.2	8886 8876 8866	999.8 998.2 996.7	166.8 171.0 175.4	8943 8932 8922	1005.6 1004.0 1002.5	172.1	9000 8989 8979	1011.4 1009.8 1008.3	173.2
120 119 118	1.689 1.642 1.597	8799 8788 8778	989.3 987.8 986.2	183.1	8855 8844 8834	993.6	179.8 184.3 189.0	8912 8901 8891	1000.9 999.4 997.8	185.5	8968 8957 8947	1006.7 1005.1 1003.5	186.7
117 116 115	1.552 1.509 1.467	8767 8757 8 747	984.6 983.0 981.5	197.6	8824 8813 8803	990.4 988.8 987.3	193.9 198.9 204.0	8880 8869 8859	996.2 994.5 993.0	195.2 200.2 205.3	8936 8925 8915	1001.9 1000.3 998.7	201.4
114 113 112	1.426 1.386 1.347	8736 8726 8715	979.9 978.4 976.8	213.3	8792 8781 8771	985.7 984.1 982.5	214.6	8848 8837 8826	991.4 989.8 988.2	216.0	8904 8893 8882	997.1 995.5 993.9	217.3
111 110 109	1.308 1.271 1.235	8705 8695 8684	975.3 973.7 972.1	230.6	8760 8750 8739	980.9 979.3 977.8	232.1	8816 8805 8794	986.6 985.0 983.4	233.5	8871 8861 8849	992.3 990.7 989.1	235.0
108 107 106	1.200 1.165 1.131	8674 8663 8653	970.5 968.9 967.3	249.7	8729 8718 8708	976.2 974.6 973.0	251.3	8784 8773 8763	981.8 980.2 978.6	252.8	8839 8828 8817	987.5 985.9 984.3	254.4
105 104 103	1.098 1.066 1.035	8643 8632 8622	965.7 964.1 962.6	270.6	8698 8687 8677	971.4 969.8 968.2	265.1 272.3 279.7	8752 8741 8731	977.0 975.4 973.8	274.0	8807 8796 8785	982.7 981.0 979.4	275.7
102 101 100	1.005 0.975 0.946	8612 8602 8591	961.0 959.4 957.8	293.4	8666 8656 8645	966.6 965.0 963.4	295.3	8720 8710 8699	972.2 970.6 969.0	297.1	8775 8764 8753	977.8 976.2 974.6	298.9
99 98 97	0.918 0.891 0.864	8581 8571 8560	956.2 954.6 953.1	318.2	8635 8624 8614	961.8 960.2 958.5	311.6 320.2 329.1	8689 8678 8668	967.4 965.8 964.2	322.2	8743 8732 8721	973.0 971.3 969.8	324.2
96 95 94	0.838 0.813 0.788	8550 8540 8529	951.5 949.9 948.3	345.7	8604 8593 8583	957.0 955.4 953.8	347.9	8657 8647 8636	962.6 961.0 959.4	350.0	8711 8700 8689	968.2 966.6 964.9	352.2
93 92 91	0.764 0.741 0.718	8519 8509 8498	946.7 945.1 943.5	27A 1!	8572 8562 8551	952.2 950.6 949.0	367.8 378.4 389.4	8626 8615 8604	957.8 956.1 954.5	380.8	8679 8668 8657	963.3 961.6 960.0	383.1
90 89 88	0.696 0.675 0.654	8488 8478 8 467	941.9 940.3 938.6	409.8	8541 8531 8520	947.4 945.8 944.1	412.4	8594 8583 8572	952.9 951.3 949.6	114.9	8646 8636 8625	958.3 956.7 955.0	405.7 417.5 429.5
87 86 85	0.633 0.613 0.594	8447	937.0 935.4 933.8	446.0	8510 8499 8489	942.5 940.9 939.2	448.8	8562 9552 8541	948.0 946.3 944.7	51.5	8615 8604 8593	953.4 951.8 950.1	454.3

TEMPERATURE-ENTROPY TABLE

, i	pund		1.76		1.77			1.78			1.79	
Temperature, Degrees Fahr.	Pressure, Pounds per Square Inch.	Quality.	Heat Contents.	Quality.	Heat Con- tents.	Sperific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.
324 323 322	94.8 93.5 92.2	273.4	1325.4 6.0 1323.7 6.0 1322.1 6.7	7 295.0	1336.1 1334.4 1332.7	6.84						
321 320 319	90.9 89.6 88.3	266.0	1320.4 6.8 1318.8 6.9 1317.1 6.9	0 287.4	1331.1 1329.5 1327.8	6.99 7.06 7.14			•••		•••	
318 317 316	87.1 85.9 84.6	258.4	1315.5 7.0 1313.9 7.1 1312.2 7.1	282.3 1 279.8 9 277.3	1326.2 1324.5 1322.9	7.21 7.29 7.37	300.8 298.3	1335.0 1333.3	7.44 7.52			
315 314 313	83.4 82.3 81.1	250.9	1310.6 1309.0 1307.4	5 272.1	1321.2 1319.5 1317.8	7.45 7.53 7.62	293.1	1331.6 1329.9 1328.3	7.60 7.69 7.77			
312 311 310	79.9 78.8 77.6	243.4	1305.8 7.8 1304.2 7.6 1302.6 7.6	0 264.5	1316.2 1314.6 1313.0	7.70 7.79 7.88	285.5	1326.6 1324.9 1323.3	7.86 7.95 8.03			•••
309 308 307	76.5 75.4 74.3	236 .0	1301.0 7.7 1299.4 7.8 1297.8 7.9	6 257.0	1311.4 1309.7 1308.1	7.97 8.05 8.14	278.0	1321.7 1320.0 1318.3	8.12 8.21 8.30	299.1 296.5	1330.3 13 2 8.6	8.40 8.50
306 305 304	73.2 72.2 71.1	231.2 228.8 226.4	1296.3 8.0 1294.7 8.1 1293.1 8.2	4 251.9 3 249.3 2 246.9	1306.4 1304.8 1303.2	8.23 8.33 8.42	273.0 270.5 267.9	1316.7 1315.0 1313.4	8.40 8.49 8.59	291.4	1326.9 1325.3 1323.6	8.59 8.69 8.79
303 302 301	70.0 69.0 68.0	221.7	1291.5 8.3 1289.9 8.4 1288.4 8.5	0 241.9	1301.6 1300.0 1298.3	8.60	262.8	1311.7 1310.0 1308.3	8.69 8.79 8.89	286.2 283.5 281.0	1321.9 1320.2 1318.5	8.89 8.99 9.09
300 299 298	67.0 66.0 65.0	214.2	1286.8 8.6 1285.2 8.7 1283.6 8.8	0 236.9 0 234.4 0 231.9	1296.7 1295.1 1293.5	8.80 8.91 9.01	257.6 255.0 252.5	1306.6 1304.9 1303.3	8.99 9.09 9.20	275.9	1316.8 1315.1 1313.4	9.19 9.29 9.40
297 296 295	64.0 63.1 62.1	206.8	1282.0 8.9 1280.4 9.0 1278.8 9.1		1291.9 1290.3 1288.7	9.11 9.22 9.33	247.4	1301.7 1300.1 1298.4	9.30 9.41 9.51	268.0	1311.7 1310.1 1308.5	9.50 9.61 9.72
294 293 292	61.2 60.2 59.3	199.5	1277.2 9.2 1275.6 9.3 1274.0 9.4	3 219.6	1287.1 1285.5 1283.9	9.44 9.55 9.66	242.3 239.8 237.3	1296.8 1295.2 1293.6	9.62 9.73 9.85	260.3	1306.8 1305.2 1303.5	9.83 9.95 10.06
291 290 289	58.4 57.5 56.7	192.3	1272.5 1271.0 1269.4 9.5 9.6	6 212.1	1282.3 1280.6 1279.0	9.77 9.88 10.00	232.1	1291.8 1290.2 1288.5	0.09	252.6	1301.9 1300.2 1298.5	10.30
288 287 286	55.8 54.9 54.1	185.0	1267.9 9.8 1266.4 10.0 1264.8 10.1	1 204.4	1277.4 1275.8 1274.2	10.24	224.5	1286.9 1285.2 1283.6	0.45	244.7	1296.9 1295.2 1293.5	10.68
285 284 283	53.2 52.4 51.6	180.2 177.8 175.4	1263.3 10.2 1261.7 1260.1 10.5	5 199.4 7 196.9 194.4	1272.6 1271.0 1269.4	10.61	216.9	1282.0 1280.4 1278.8	0.83	236.9	1291.8 1290.2 1288.5	11.06
282 281 280	50.8 50.0 49.19	173.0 170.6 168.2	1258.5 1257.0 1255.4 10.8	2 191.9 189.5 187.0	1267.8 1266.2 1264.6	10.87 11.00 11.14	211.9 209.4 206.8	1277.2 1275.6 1274.0	$1.10 \\ 1.23 \\ 1.36$	231.7 229.1 226.5	1286.8 1285.2 1283.5	11.34 11.47 11.62
279 278 277	48.41 47.64 46.88	163.4	1253.9 1252.4 11.1 1250.9	5 182.2	1263.1 1261.6 1260.0	11.42	204.4 202.0 199.5	12 72.4 1 12 70.9 1 1269.3	1.50 1.65 1.80	224.0 221.4 218.8	1281.8 1280.2 1278.6	l 1.90 l

hr.	Pounds		1.80			1.81			1.82			1.83	•
Temperature, Degrees Fahr	Pressure, Pounds per Square Inch.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.
324 323 322	94.8 93.5 92.2							 :::		:::			
321 320 319	90.9 89.6 88.3	•••	•••	: :.:							•••		
318 317 316	87.1 85.9 84.6					•••				 :			
315 314 313	83.4 82.3 81.1	•••				•••							
312 311 310	79.9 78.8 77.6					•••			•••				
309 308 307	76.5 75.4 74.3					•••			•••				• • • •
306 305 304	73.2 72.2 71.1				•••	•••			•••				
303 302 301	70.0 69.0 68.0						 :::				•••		
300 299 298	67.0 66.0 65.0	296.3	1326.7 1325.0 1323.3	9.48	•••								
297 296 295	64.0 63.1 62.1	288.4	1321.6 1319.9 1318.2	9.81	•••			•••					
294 293 292	61.2 60.2 59.3	283.1 280.5 277.8	1316.4 1314.7 1313.0	10.03 10.15 10.27	301.5 298.7	1325.2 1323.4	10.36 10.48	•••			•••		
291 290 289	58.4 57.5 56.7	275.1 272.4 269.8	1311.4 1309.7 1308.0	10.39 10.52 10.65	296.0 293.3 290.6	1321.7 1320.0 1318.3	10.60 10.73 10.86	•••			• • • •		
288 287 286	55.8 54.9 54.1	267.2 264.5 261.9	1306.4 1304.7 1303.0	10.77 10.90 11.03	288.0 285.3 282.5	1316.6 1314.8 1313.1	10.99 11.11 11.25	•••					.
285 284 283	53.2 52.4 51.6	259.3 256.7 254.0	1301.4 1299.7 1298.0	11.16 11.29 11.43	279.8 277.1 274.4	1311.4 1309.7 1308.0	11.39 11.53 11.67	301.0 298.3 295.5	1321.9 1320.1 1318.3	11.64 11.78 11.93	•••		
282 281 280	50.0	251.4 248.7 246.0	1296.4 1294.7 1293.0	11.57 11.72 11.86	271.7 269.0 266.3	1306.3 1304.6 1302.9	11.81 11.96 12.10	292.8 290.0 287.2	1316.5 1314.8 1313.0	12.07 12.22 12.37	•••		
279 278 277	47.64	243.3 240.7 238.1	1291.4 1289.7 1288.0	12.00 12.15 12.30	263.6 261.0 258.3	1301.2 1299.5 1297.8	12.25 12.40 12.56	284.5 281.7 279.0	1311.2 1309.5 1307.7	12.53 12.69 12.84	301.5 298.8	1319.0 1317.3	12.95 13.10

ahr.	apun		1.76	- 1		1.77		0	1.78		1	1.79	
Temperature, Degrees Fahr.	Pressure, Pounds per Square Inch.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume,	Quality.	Heat Con- tents.	Specific Volume,
276 275 274	46.13 45.39 44.67	156.2	1249.3 1247.8 1246.3	11.57	174.8	1258.4 1256.8 1255.2	11.84	194.4	1267.7 1266.0 1264.4	12.09	213.6	1277.0 1275.3 1273.6	12.35
273 272 271	43.95 43.24 42.54	149.0	1244.7 1243.2 1241.7	12.01	167.4	1253.6 1252.0 1250.4	12.29	186.9	1262.8 1261.2 1259.6	12.54	205.8	1271.9 1270.3 1268.6	12.82
270 269 268	41.84 41.16 40.49	141.8	1240.2 1238.7 1237.2	12.47	160.0	1248.8 1247.2 1245.7	12.76	179.1	1258.0 1256.4 1254.8	13.02	198.0	1266.9 1265.3 1263.7	13.31
267 266 265	39.83 39.17 38.53	134.5	1235.7 1234.2 1232.6	12.95	152.6	1244.1 1242.6 1241.0	13.25	171.5	1253.2 1251.6 1250.0	13.53	190.2	1262.0 1260.4 1258.8	13.83
264 263 262	37.89 37.26 36.64	127.3	1231.0 1229.5 1228.0	13.46	145.2	1239.5 1237.9 1236.4	13.76	163.9	1248.4 1246.7 1245.1	14.06	182.5	1257.2 1255.6 1254.0	14.38
261 260 259	36.02 35.42 34.83	120.1	1226.4 1224.9 1223.3	13.99	137.8	1234.8 1233.2 1231.7	14.30	156.2	1243.5 1241.9 1240.3	14.60		1252.4 1250.8 1249.1	
258 257 256	34.24 33.66 33.09	115.3 112.9 110.5	1221.7 1220.2 1218.6	14.35 14.54 14.74	130.4	1230.1 1228.6 1227.0	14.86	148.4	1238.7 1237.0 1235.4	15.18	166.9	1247.4 1245.8 1244.2	15.53
255 254 253	32.53 31.97 31.42	105.7	1217.1 1215.6 1214.1	15.11	123.0	1225.5 1224.0 1222.4	15.44	140.6	1233.8 1232.1 1230.5	15.78	161.8 159.2 156.5	1242.6 1241.0 1239.3	15.94 16.15 16.36
252 251 250	30.88 30.35 29.82	98.5	1212.5 1211.0 1209.4	15.72	118.0 115.5 113.0	1220.8 1219.2 1217.6	15.86 16.06 16.27	133.0	1228.9 1227.3 1225.7	16.40	151.3	1237.7 1236.1 1234.4	16.80
249 248 247	29.30 28.79 28.29	91.3	1207.9 1206.4 1204.8	16.36	108.0	1216.0 1214.4 1212.9	16.70	125.4	1224.1 1222.6 1221.0	17.06	143.5	1232.8 1231.2 1229.6	17.47
246 245 244	27.80 27.31 26.83	84.0	1203.3 1201.8 1200.3	17.01	100.6	1211.4 1209.9 1208.3	17.35	117.8	1219.5 1217.9 1216.3	17.75	135.7	1227.9 1226.3 1224.7	18.17
243 242 241	26.35 25.88 25.42	76.8	1198.8 1197.3 1195.8	17.70	93.3	1206.7 1205.1 1203.6	18.07	110.3	1214.7 1213.1 1211.5	18.48	127.9	1223.1 1221.4 1219.8	18.91
240 239 238	24.97 24.52 24.08	69.6	1194.3 1192.8 1191.3	18.41	85.9	1202.0 1200.5 1198.9	18.80	102.7	1209.9 1208.3 1206.8	19.23	120.0	1218.2 1216.6 1215.0	19.70
237 236 235	23.64 23.21 22.79	62.4	1189.7 1188.2 1186.6	19.19	78.5 76.0	1197.4 1195.8 1194.3	19.59 19.85	95.2	1205.2 1203.6 1202.0	20.04	112.4	1213.4 1211.8 1200.1	20.50
234 233 232	22.38 21.97 21.57	55.2	1185.1 1183.6 1182.1	19.99	73.5 71.0 68.6	1192.7 1191.2 1189.6	20.12 20.40 20.69	87.6 85.1	1200.4 1198.8 1197.3	20.89 21.17	104.5	1208.5 1206.9 1205.3	21.39
231 230 229	21.17 20.78 20.40	50.4 48.0 45.7	1180.6 1179.1 1177.6	20.54 20.83 21.11	63.6	1188.0 1186.4 1184.9	21.29	82.6 80.1 77.7	1195.8 1194.3 1192.8	21.47 21.77 22.10	96.8	1203.7 1202.1 1200.5	22.30

s, shr.	unds		1.80	1	.81	1.82		1.83	
Temperature, Degrees Fahr.	Pressure, Pounds per Square Inch.	Quality.	Heat Contents. Specific Volume.	Quality.	Heat Contents. Specific Volume.	Quality. Heat Contents.	Specific Volume.	Heat Contents.	Specific Volume.
276 275 274	46.13 45.39 44.67	235.4 232.8 230.2	1286.3 12.45 1284.7 12.60 1283.0 12.76	255.5 252.8 250.1	296.1 294.4 12.87 292.7 13.03	276.3 1306.0 273.5 1304.2 270.8 1302.5	13.00 296. 13.16 293. 13.33 290.	0 1315.6 1 2 1313.8 1 4 1312.0	13.26 13.43 13.60
273 272 271	43.95 43.24 42.54	227.6 224.9 222.2	1281.3 12.93 1279.6 13.10 1277.9 13.26	247.4 244.7 242.0	291.0 13.20 289.3 13.36 287.6 13.54	268.0 1300.7 265.2 1299.0 262.5 1297.3	13.50 287. 13.67 284. 13.84 282.	7 1310.2 1 9 1308.5 1 1306.7	13.77 13.95 14.13
270 269 268	41.84 41.16 40.49	219.5 216.9 214.3	1276.2 13.43 1274.5 13.60 1272.8 13.78	239.4 236.7 234.0	285.9 13.70 284.2 13.89 282.5 14.06	259.7 1295.5 257.0 1293.7 254.2 1292.0	14.02 279. 14.20 276. 14.39 273.	3 1304.9 1 5 1303.2 1 8 1301.4	14.31 14.50 14.68
267 266 265	39.83 39.17 38.53	211.6 209.0 206.3	1271.1 13.95 1269.4 14.13 1267.7 14.31	231.3 228.6 225.9	280.8 14.24 279.1 14.43 277.4 14.60	251.4 1290.3 248.7 1288.5 246.0 1286.8	14.57 271. 14.76 268. 14.94 265.	0 1299.7 1 2 1297.9 1 5 1296.1	15.06
264 263 262	37.89 37.26 36.64	203.6 200.9 198.3	1266.0 14.50 1264.3 14.70 1262.6 14.89	223.2 220.5 217.8	275.7 14.80 274.0 15.00 272.3 15.19	240.5 1283.3	15.33 260.	7 1294.4 1 0 1292.6 1 2 1290.9	15.65
261 260 259	36.02 35.42 34.83	195.6 193.0 190.4	1261.0 15.07 1259.4 15.27 1257.7 15.47	215.1 212.4 209.7	270.6 15.39 268.9 15.58 267.1 15.79	232.2 1278.1	15.73 254. 15.94 251. 16.15 248.	4 1289.2 1 6 1287.4 1 9 1285.6	16.27
258 257 256	34.24 33.66 33.09	187.9 185.4 182.9	1256.1 15.67 1254.5 15.88 1252.9 16.09	207.0 204.3 201.5	265.4 16.00 263.6 16.20 261.9 16.41	224.0 1273.0	16.36 246. 16.57 243. 16.79 240.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16.70 16.93 17.15
255 254 253	32.53 31.97 31.42	180.2 177.6 174.9	1251.3 16.30 1249.6 16.52 1247.9 16.73	198.8 196.1 193.4	260 . 2 16 . 62 258 . 5 16 . 84 256 . 8 17 . 06	218.5 1269.5 215.7 1267.8 213.0 1266.1	17.23 2 35.	$\begin{array}{c c} 8 & 1278.7 \\ 0 & 1277.0 \\ 3 & 1275.2 \end{array}$	17.60
252 251 250	30.88 30.35 29.82	172.2 169.5 166.8	1246.2 16.95 1244.5 17.18 1242.9 17.40	190.7 188.0 185.3	255.1 17.29 253.3 17.52 251.6 17.75	210.3 1264.3 207.5 1262.6 204.7 1260.9	17.92 226.	$5\begin{vmatrix} 1273.5 \\ 7\begin{vmatrix} 1271.7 \\ 1269.9 \end{vmatrix}$	18.32
249 248 247	29.30 28.79 28.29	164.2 161.5 158.8	1241 . 2 17 . 63 1239 . 5 17 . 86 1237 . 8 18 . 10	182.5 179.8 177.1	249.9 18.00 248.2 18.23 246.6 18.48	199.2 1257.4	18.65 218.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	19.06
246 245 244	27.80 27.31 26.83	153.4	1236.2 18.34 1234.6 18.59 1232.9 18.84	171.7 12	244.9 18.73 243.2 18.99 241.5 19.23	190.9 1252.3	19.40 210.	$\begin{array}{c c} 0 & 1263 & 1 & 1 \\ 2 & 1261 & 3 & 1 \\ 4 & 1259 & 6 & 2 \end{array}$	19.84
243 242 241	26.35 25.88 25.42	145.4	1231.2 19.10 1229.5 19.35 1227.8 19.61	163.7 12	239.8 19.49 238.1 19.76 236.4 20.03	185.3 1248.8 182.6 1247.1 179.9 1245.4	20.20 201.	$\begin{array}{c c} 6 & 1257.9 \\ 9 & 1256.2 \\ 1 & 1254.5 \end{array}$	20.67
240 239 238	24.97 24.52 24.08	137.3	1226.1 19.88 1224.4 20.15 1222.7 20.42	155.6 12	234.7 20.31 233.0 20.59 231.4 20.87	177.1 1243.7 174.3 1242.0 171.5 1240.3	21.03 193.	3 1252.8 2 5 1251.1 2 7 1249.3 2	21.53
237 236 235	23.64 23.21 22.79	131.8 129.1 126.5	1221.1 20.70 1219.4 20.99 1217.7 21.29	147.4 12	239.7 21.16 228.0 21.45 226.3 21.76	166.0 1236.9 163.2 1235.2	21.93 185. 22.23 182.	0 1247.6 2 2 1245.9 2 4 1244.2	22.13 22.44 22.76
234 233 232	22.38 21.97 21.57	121.1 118.4	1216.1 21.59 1214.5 21.89 1212.8 22.19	139.312	224.6 22.06 222.9 22.38 221.2 22.69	160.4 1233.5 157.6 1231.7 154.9 1230.0	22.86 176.	6 1242.4 2 9 1240.7 2 1 1238.9 2	23.41
231 230 229	21.17 20.78 20.40	115.8 113.2 110.7	1211.2 22.50 1209.6 22.83 1208.0 23.17	131.2112	219.5 23.02 217.8 23.35 216.1 23.68	152.1 1228.2 149.3 1226.4 146.6 1224.7	23.871 168.	3 1237.2 2 5 1235.4 2 7 1233.7 2	24.45 I

ahr.	e pund e		1.76	1	1.77	1.78	1.79
Temperature, Degrees Fahr.	Pressure, Pounds per Square Inch.	Quality.	Heat Contents. Specific Volume.	Quality.	Heat Contents. Specific Volume.	Quality. Heat Contents. Specific Volume.	Quality. Heat Contents. Specific Volume.
228 227 226	20.02 19.64 19.28	43.3 40.9 38.5	1176.1 21.41 1174.6 21.71 1173.1 22.02	58.8 56.4 54.0	1183.3 21.90 1181.8 22.20 1180.3 22.53	75.2 1191.2 22.40 72.7 1189.6 22.74 70.2 1188.0 23.06	91.8 1198.9 22.94 89.2 1197.2 23.29 86.6 1195.6 23.61
225 224 223	18.91 18.56 18.21	36.1 33.7 31.3	1171.6 1160.1 22.64 1168.6 22.98	49.0	1178.8 22.87 1177.3 23.20 1175.8 23.54	67.7 1186.4 23.40 65.2 1184.9 23.74 62.7 1183.3 24.09	81.4 1192.4 24.30
222 221 220	17.86 17.52 17.19	29.0 26.6 24.2	1167.1 23.32 1165.6 23.67 1164.1 24.01	44.2 41.8 39.4	1174.3 23.90 1172.8 24.25 1171.3 24.60	60.2 1181.7 24.44 57.7 1180.1 24.80 55.1 1178.6 25.17	73.6 1187.6 25.40
219 218 217	16.86 16.54 16.22	21.7 19.3 16.9	1162.6 24.37 1161.1 24.73 1159.6 25.10	34.6 32.2	1169.8 24.96 1168.3 25.33 1166.8 25.72	52.6 1177.0 25.55 50.1 1175.5 25.93 47.6 1174.0 26.31	65.9 1182.8 26.55 63.4 1181.2 26.94
216 215 214	15.90 15.60 15.29	14.5 12.1 9.8	1158.2 25.47 1156.7 25.83 1155.2 26.22	29.8 27.4 25.0	1165.3 26.10 1163.8 26.50 1162.3 26.90	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	58.3 1178.1 27.77
213 212 211	14.99 14.70 14.41	7.4 5.0 2.6	1153.8 26.60 1152.3 26.98 1150.8 27.38	20.2	1160.8 27.31 1159.3 27.73 1157.8 28.16	37.9 1167.9 27.95 35.5 1166.3 28.38 33.0 1164.8 28.80	53.1 1174.9 28.61 50.6 1173.3 29.04 48.0 1171.7 29.47
210 209 208	14.13 13.85 13.57	9991 9980	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	13.1	1156.3 28.59 1154.9 29.00 1153.4 29.43	28.1 1161.8 29.67	
207 206 205	13.30 13.03 12.77	9969 9958 9947	1145.1 29.32 1143.6 29.85 1142.1 30.40	8.3 5.9 3.5	1151.9 29.87 1150.4 30.30 1148.9 30.75	23.2 1158.7 30.59 20.7 1157.2 31.08 18.2 1155.7 31.51	6 35.6 1164.0 31.79
204 203 202	12.51 12.26 12.01	9936 9924 9914	1140.6 30.95 1139.2 31.5 1137.8 32.09	9992	1147.4 31.20 1145.9 31.72 1144.4 32.31	1 13.3 1152.7 32.48	28.1 1159.4 33.27
201 200 199	11.77 11.53 11.29	9903 9892 9881	1136.3 32.67 1134.8 33.20 1133.4 33.80	9959	1142.9 32.89 1141.4 33.48 1139.9 34.09	5.9 1148.0 33.98	8 20.6 1154.7 34.82
198 197 196	11.06 10.83 10.61	9870 9859 98 4 8	1131.9 34.48 1130.4 35.1 1128.9 35.70	9926	1138.5 34.71 1136.9 35.35 1135.4 36.00	9993 1143.5 35.5	13.1 1150.3 36.45
195 194 193	10.39 10.17 9.96	9837 9826 9815	1127.4 1125.9 1124.5 37.8	9893	1134.0 36.67 1132.5 37.36 1131.0 38.07	8 9959 1139.0 37.62	2 5.7 11145.7 38.18
192 191 190	9.54	9804 9793 9782	1123.0 38.5 1121.5 39.2 1120.1 40.0	9859	1129.5 38.80 1128.0 39.54 1126.6 40.30	9925. 1134.5 39.8	9991 11141 1140 07
189 188 187		9760	1118.6 40.79 1117.1 41.5 1115.7 42.3	7 9826	1125.1 41.07 1123.6 41.85 1122.1 42.64	7 9903 1131.6 41.3 9891 1130.1 42.1 1 9880 1128.6 42.9	3 9957 1136.542.41
186 185 184	8.38	9727	1114.2 43.1 1112.7 43.9 1111.2 44.8	9792	1120.6 43.46 1119.1 44.29 1117.6 45.16	9 9858 1125 . 6 44 . 5	9 9923 1132.0 44.88
183 182 181	7.85		1109.7 45.7 1108.2 46.6 1106.7 47.5	9770 9760 9749	1114.7 46.95	4 9835 1122.6 46.3 5 9824 1121.1 47.2 9 9814 1119.5 48.2	7 9889 1127.547.58

, apr.	spun		1.80		1.81	•	1.82			1.83	
Temperature, Degrees Fahr.	Pressure, Pounds per Square Inch.	Quality.	Heat Contents. Specific	Quality.	Heat Con- tents.	Specific Volume.	Quality. Heat Contents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.
228 227 226	20.02 19.64 19.28	108.1 105.5 103.0	1206.3 23.50 1204.6 23.84 1203.0 24.19	125.9 123.2 120.5	1214.4 1212.7 1211.1	24.37	143.9 1223.1 141.2 1221.4 138.4 1219.7	24.90	160.1	1232.0 1230.2 1228.4	25.50
225 224 223	18.91 18.56 18.21	97.8	1201.424.53 1199.824.90 1198.225.26	115.1	1209.5 1207.9 1206.3	25.45	135.5 1217.9 132.7 1216.2 129.9 1214.4	26.02	151.5	1226.6 1224.9 1223.2	26.65
222 221 220	17.86 17.52 17.19	90.0	1196.6 25.64 1195.0 26.01 1193.3 26.40	107.2	1204.7 1203.0 1201.3	26.60	127.1 1212.7 124.4 1211.0 121.6 1209.3	27.20	143.1	1221.4 1219.7 1218.0	27.83
219 218 217	16.86 16.54 16.22	84.8 82.1 79.5	1191.7 26.80 1190.1 27.20 1188.5 27.60	99.3	1199.7 1198.1 1196.5	27.39 27.80 28.20	118.9 1207.6 116.2 1205.9 113.5 1204.3	28.43	134.7	1216.3 1214.5 1212.8	29.10
216 215 214	15.90 15.60 15.29	74.4	1186.9 28.02 1185.3 28.46 1183.8 28.88	91.4	119 4 .9 1193.3 1191.7	29.05	110.8 1202.6 108.1 1201.0 105.4 1199.3	29.73	126.2	1211.0 1209.3 1207.5	30.43
213 212 211	14.99 14.70 14.41	66.9	1182.2 29.31 1180.7 29.75 1179.1 30.20	83.6	1190.0 1188.4 1186.8	30.39	102.8 1197.7 100.1 1196.0 97.4 1194.4	31.10	117.7	1205.8 1204.1 1202.3	31.83
210 209 208	14.13 13.85 13.57	59.1	1177.5 30.66 1175.9 31.11 1174.3 31.60	78.4 75.8 73.2	1185.2 1183.6 1182.0	31.31 31.80 32.29	94.8 1192.7 92.1 1191.1 89.4 1189.5	32.51	109.3	1200.7 1199.0 1197.3	33. 30
207 206 205	13.30 13.03 12.77	51.3	1172.7 32.08 1171.1 32.56 1169.5 33.05	68.0	1180.4 1178.8 1177.2	33.29	86.8 1187.8 84.1 1186.2 81.5 1184.6	34.02	101.0	1195.6 1193.9 1192.2	34.84
204 203 202	12.51 12.26 12.01	43.6	1168.0 33.55 1166.4 34.06 1164.8 34.58	60.0	1175.6 1174.0 1172.3	34.83	78.9 1183.0 76.3 1181.4 73.6 1179.7	35.63	92.8	1190.5 1188.8 1187.2	36.49
201 200 199	11.77 11.53 11.29	38.4 35.8 33.2	1163.2 35.10 1161.7 35.66 1160.1 36.20	52.1	1170.7 1169.0 1167.4	36.51	71.0 1178.0 68.3 1176.3 65.6 1174.7	37.37	84.6	1185.5 1183.8 1182.2	38.21
198 197 196	11.06 10.83 10.61	28 .1	1158.5 36.77 1156.9 37.33 1155.4 37.92	46.8 44.1 41.5	1165.8 1164.2 1162.6	37.69 38.30 38.90	62.9 1173.0 60.1 1171.3 57.4 1169.7	39.18	76.7	1180.6 1179.0 1177.4	40.04
195 194 193	10.39 10.17 9.96	20.5	1153.8 38.50 1152.3 39.11 1150.8 39.72	36.3	1161.0 1159.4 1157.8	40.17	54.7 1168.1 52.0 1166.5 49.3 1164.9	41.07	68.8	1175.8 1174.2 1172.6	41.95
192 191 190	9.75 9.54 9.34	13.0	1149.3 40.39 1147.7 41.00 1146.2 41.65	28.3	1156,2 1154.6 1153.1	42.12	46.6 1163.3 44.0 1161.7 41.3 1160.1	43.10	61.0	1171.0 1169.4 1167.8	44.00
189 188 187		5.3	1144.7 1143.2 12.99 1141.7 43.68	20.5	1151.5 1149.9 1148.3	44.22	36.0 1156.9	45.20	52.7	1166.1 1164.5 1162.8	46.10
186 185 184	8.38	9988	1140.0 44.33 1138.4 45.18 1136.9 46.06	12.7	1146.7 1145.2 1143.7	46.40	28.0 1152.1	47.40	44.4	1161.1 1159.4 1157.7	48.50
183 182 181	8.02 7.85 7.68		1135.3 46.96 1133.8 47.89 1132.2 48.85		1142.1 1140.5 1138.9			48.90 49.65 50.40	38.8 36.0 33.2	1156.1 1154.5 1152.8	

abr.	pung		1.76		1.77		-	1.78		1.79	<u>-</u>
Temperature, Degrees Fahr.	Pressure, Pounds per Square Inch.	Quality.	Heat Contents. Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Contents. Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.
180 179 178	7.51 7.35 7.19	9673 9662 9651	1105.1 48.56 1103.7 49.47 1102.2 50.4	9737 9727 9716	1111.5 1110.0 1108.6	49.80	9802 9791 9780	1117.9 49.21 1116.4 50.1 1114.9 51.1	9867 9856 9844	1124.3 1122.8 1121.3	50.5
177 176 175	7.03 6.87 6.71	9641 9629 9619	1100.7 51.5 1099.2 52.5 1097.7 53.6	9705 9693 9683	1107.1 1105.5 1104.0	52.8	9769 9757 9747	1113.4 52.2 1111.9 53.2 1110.4 54.3	9833 9821 9811	1119.8 1118.2 1116.7	52.5 53.5 54.6
174 173 172	6.56 6.42 6.27	9608 9597 9587	1096.2 54.7 1094.7 55.8 1093.2 56.8	9672 9661 9650	1102.5 1101.0 1099.5	56.1	9736 9725 9714	1108.8 55.4 1107.3 56.5 1105.8 57.6	9799 9788 9777	1115.2 1113.7 1112.1	56.9
171 170 169	6.13 5.99 5.85	9575 9564 9553	1091.6 58.0 1090.1 59.3 1088.6 60.6	9638 9627 9616	1097.9 1096.4 1094.9	59.7	9702 9691 9680	1104.2 58.8 1102.7 60.1 1101.2 61.4	9765 9754 9743	1110.5 1109.0 1107.5	60.5
168 167 166	5.72 5.59 5.46	9543 9532 9521	1087.1 61.8 1085.6 63.1 1084.1 64.5	9606 9595 9584	1093.4 1091.9 1090.3	63.5	9669 9657 9646	1099.7 62.7 1098.1 63.9 1096.6 65.3	9732 9720 9709	1105.9 1104.4 1102.8	64.3
165 164 163		9510 9500 9489	1082.6 65.7 1081.0 67.1 1079.5 68.4	9573 9562 9551	1088.8 1087.3 1085.7	67.5	9636 9624 9613	1095.0 66.6 1093.5 67.9 1092.0 69.3	9698 9687 9676	1101.3 1099.7 1098.2	68.4
162 161 160	4.852	9478 9467 9457	1078.0 69.9 1076.5 71.4 1075.0 73.0	9540 9529 9518	1084.2 1082.7 1081.2	70.3 71.9 73.5	9602 9591 9580	1090.4 70.8 1088.9 72.3 1087.4 74.0	9664 9653 9642	1096.6 1095.1 1093.6	72.8
159 158 157	4.517	9446 9435 9425	1073.4 74.5 1071.9 76.1 1070.4 77.8	9508 9497 9486	1079.6 1078.1 1076.6	76.6	9569 9558 9547	1085.8 75.5 1084.2 77.1 1082.7 78.9	9631 9620 9609	1092.0 1090.4 1088.9	77.6
156 155 154	4.200	9414 9402 9391	1068.9 79.5 1067.3 81.2 1065.7 83.0	9475 9464 9453	1075.0 1073.4 1071.9	81.8	9536 9525 9514	1081.2 80.6 1079.6 82.3 1078.0 84.1	9598 9586 9575	1087.3 1085.7 1084.2	82.8
153 152 151	3.903	9381 9370 9359	1064.2 84.8 1062.7 86.7 1061.1 88.6	9442 9431 9419	1070.4 1068.8 1067.2	87.2	9503 9491 9480	1076.5 85.9 1074.9 87.8 1073.3 89.8	9564 9552 9541	1082.6 1081.0 1079.4	88.4
150 149 148	3.624	9337	1059.6 90.6 1058.0 92.6 1056.5 94.8	9409 9398 9387	1065.7 1064.1 1062.6	93.2	9469 9458 9447	1071.8 91.8 1070.2 93.8 1068.7 96.0	9530 9518 9508	1077.9 1076.3 1074.8	94.4
147 146 145	3.361	9316 9305 9294	1055.0 96.9 1053.4 99.1 1051.8 101.3	9365	1061.0 1059.5 1057.9	99.7	9436 9425 9413	1067.1 98.1 1065.5 100.4 1063.9 102.6	9496 9485 9473	1073.1 1071.6 1070.0	
144 143 142	3.116	9272	1050.3 1048.7 1047.2 108.5	9343 9332 9321	1056.4 1054.8 1053.2	106.7	9403 9391 9380	1062.4 104.9 1060.8 107.3 1059.2 109.8	9462 9451 9440	1068.4 1066.8 1065.2	108.0
141 140 139	2.885	9251 9240 9229	1045.7 110.9 1044.1 113.5 1042.5 116.2	9299	1051.7 1050.1 1048.5	114.2	9358	1057.7 1056.0 1054.5 117.7	9417	1063.7 1062.0 1060.5	115.6
138 137 136	2.740 2.669 2.600	9207	1041.0 1039.4 1037.8 124.5	9266	1047.0 1045.3 1043.8	122.4	9325	1053.0 120.3 1051.3 123.2 1049.7 126.1	9384	1058.9 1057.3 1055.7	124.0
135 134 133	2.467	9175	1036.2 1034.6 1033.1 133.6	9233	1042.2 1040.6 1039.0	131.3	9292	1048.1 129.1 1046.5 132.1 1044.9 135.3	9350	1054.1 1052.4 1050.8	133.0

shr.	spun		.1.80		1.81			1.82			1.83	
Temperature, Degrees Fahr.	Pressure, Pounds per Square Inch.	Quality.	Heat Contents. Specific	Quality.	Heat Con-	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Contents.	Specific Volume.
180	7.51	9931	1130.7 49.8	5 9996	1137.2	50.1	14.6	1144.0	51.2	30.4	1151.1	52.9
179	7.35	9920	1129.2 50.7	9 9985	1135.6	51.1	12.0	1142.5	52.0	27.6	1149.4	53.8
178	7.19	9909	1127.7 51.8	2 9973	1134.1	52.2	9.3	1140.9	52.8	24.7	1147.8	54.6
177	7.03	9897	1126.2 52.	9 9962	1132.5	53.2	6.6	1139.3	53.5	21.8	1146.0	55.6
176	6.87	9886	1124.6 53.	9 9950	1130.9	54.2	3.9	1137.7	54.3	18.9	1144.3	56.5
175	6.71	9874	1123.0 55.	9 9938	1129.4	55.4	1.1	1136.0	55.1	16.0	1142.6	57.5
174	6.56	9863	1121.5 56.	1 9927	1127.9	56.5	9991	1134.3	56.8	13.1	1140.9	58.4
173	6.42	9852	1120.0 57.	2 9916	1126.3	57.6	9979	1132.6	58.0	10.2	1139.2	59.4
172	6.27	9841	1118.4 58.	4 9904	1124.8	58.7	9968	1131.1	59.1	7.3	1137.5	60.4
171	6.13	9829	1116.8 59.	9880	1123.1	59.9	9955	1129.5	60.3	4.4	1135.8	61.4
170	5.99	9817	1115.3 60.		1121.6	61.3	9944	1127.9	61.6	1.5	1134.2	62.4
169	5.85	9806	1113.8 62.		1120.0	62.6	9932	1126.3	63.0	9995	1132.6	63.4
168	5.72	9795	1112.2 63.	5 9858	1118.5	63.9	. 9921	1124.8	64.3	9984	1131.0	64.7
167	5.59	9783	1110.6 64.	8 9846	1116.9	65.2	9909	1123.2	65.6	9971	1129.4	66.0
166	5.46	9772	1109.1 66.	2 9835	1115.3	66.6	9897	1121.6	67.0	9960	1127.9	67.4
165	5.33	9761	1107.5 67.	9823	1113.8	67.9	9886	1120.0	68.3	9948	1126.3	68.7
164	5.21	9749	1106.0 68.	9812	1112.2	69.3	9874	1118.4	69.7	9936	1124.7	70.2
163	5.09	9 738	1104.4 70.	9800	1110.6	70.7	9862	1116.9	71.1	9925	1123.1	71.6
162	4.969	9726	1102.8 71.	9789	1109.0	72.1	9851	1115.3	72.6	9913	1121.5	73.1
161	4.852	9715	1101.3 73.	9777	1107.5	73.7	9839	1113.7	74.2	9901	1119.9	74.7
160	4.738	9704	1099.7 74.	9 9766	1105.9	75.4	9828	1112.1	75.9	9890	1118.3	76.3
159	4.626	9693	1098.2 76.	9755	1104.4	77.0	9816	1110.5	77.4	9878	1116.7	77.9
158	4.517	9681	1096.6 78.	9743	1102.8	78.6	9805	1108.9	79.1	9866	1115.1	79.6
157	4.409	9670	1095.1 79.	9732	1101.2	80.4	9793	1107.4	80.9	9855	1113.6	81.4
156 155 154	4.303 4.200 4.099	9659 9647 9636	1093.5 1091.9 1090.3 85.	4 9708	1099.6 1098.0 1096.4	82.1 83.9 85.7	9782 9770 9758	1105.8 1104.2 1102.6	82.7 84.4 86.3	9843 9831 9819	1111.9 1110.3 1108.7	83.2 84.9 86.8
153 152 151	4.000 3.903 3.808	9625 9613 9601	1088.7 1087.1 1085.5 90.	9674	1094.9 1093.3 1091.6	87.6 89.5 91.5	9746 9734 9722	1101:0 1099.4 1097.8	88.1 90.0 92.1	9807 9795 9783	1107.1 1105.5 1103.9	88.7 90.6 92.6
150	3.715	9590	1084.0 92.1	9639	1090.1	93.5	9711	1096.2	94.1	9772	1102.3	94.7
149	3.624	9579	1082.4 95.1		1088.5	95.6	9700	1094.6	96.2	9760	1100.6	96.8
148	3.535	9568	1080.8 97.1		1086.9	97.8	9688	1093.0	98.4	9749	1099.1	99.0
147 146 145	3.447 3.361 3.278	9556 9545 9533	1079.2 1077.7 1076.0 103.1	9605	1085.3 1083.7 1082.1	100.0 102.3 104.6	9676 9665 9653	1091.3 1089.8 1088.1	102.9	9736 9725 9713	1097.4 1095.8 1094.2	103.6
144 143 142	3.196 3.116 3.037	9522 9510 9499	1074.5 1072.8 1071.3 111.5	9582 9570 9559	1080.5 1078.9 1077.3	106.9 109.4 111.9	9641 9630 9618	1086.5 1084.9 1083.3	110.1	9701 9689 9678	1092.6 1090.9 1089.3	108.3 110.7 113.3
141 140 139	2.960 2.885 2.812	9476 i	1069.7 113.8 1068.0 116.4 1066.5 119.2	9536	1075.7 1074.0 1072.4	117.1	9595	1081.7 1080.0 1078.4	117.8	9654	1087.7 1086.0 1084.4	118.6
138 137 136	2.740 2.669 2.600	9443	1064.9 121.9 1063.2 124.7 1061.6 127.7	9501	1070.8 1069.2 1067.6	122.6 125.5 128.5	9560	1076.8 1075.1 1073.5	126.3	9619	1082.8 1081.1 1079.5	127.1 l
135 134 133	2.533 2.467 2.403	9420 9409 9397	1060.0 130.8 1058.4 133.8 1056.8 137.0	9479 9467 9456	1066.0 1064.3 1062.7	134.6	9525	1071.9 1070.2 1068.6	135.4	9584	1077.9 1076.2 1074.5	136.3

ahr.	Pounda		1.76		1.77			1.78			1.79	
Temperature, Degrees Fahr.	Pressure, Pou per Square Inch.	Quality.	Heat Contents. Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Contents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume,
132 131 130	2.341 2.280 2.220	9154 9143 9133	1031.5 136.9 1029.9 140.1 1028.3 143.5	9201	1037.4 1035.8 1034.2	137.7 141.0 144.4	9270 9259 9248	1043.3 1041.7 1040.1	138.6 141.9 1 45 .3	9328 9317 9306	1049.2 1047.6 1046.0	139.5 142.7 1 46. 2
129 128 127	2.161 2.103 2.047	9122 9111 9100	1026.8 147.0 1025.2 150.5 1023.6 154.2	9180 9169 9158	1032.7 1031.1 1029.5	147.9 151.5 155.1	9237 9226 9215	1038.5 1036.9 1035.3	152.4	9295 9284 9273	1044.4 1042.8 1041.2	149.7 153.4 157.1
126 125 124	1.992 1.938 1.886	9089 9079 9068	1022.0 158.0 1020.5 161.9 1018.8 165.8	9147 9136 9125	1027.9 1026.3 1024.7	159.0 162.9 166.9	9204 9193 9182	1033.7 1032.2 1030.5	163.9	9261 9250 9239	1039.6 1038.0 1036.3	164.9
123 122 121	1.835 1.785 1.737	9057 9046 9036	1017.3 170.0 1015.6 174.3 1014.0 178.7	9114 9103 9092	1023.1 1021.4 1019.9	175.4	9171 9160 9149	1029.0 1027.3 1025.7	176.5	9228 9217 9206	1034.8 1033.1 1031.5	173.2 177.6 182.1
120 119 118	1.689 1.642 1.597	9025 9014 9003	1012.5 183.2 1010.9 187.8 1009.3 192.6	9081 9070 9060	1018.3 1016.7 1015.1	184.4 189.0 193.8	9138 9127 9116	1024.1 1022.5 1020.9	190.2	9195 9183 9172	1029.9 1028.3 1026.6	191.4
117 116 115	1.552 1.509 1.467	8992 8981 8971	1007.7 197.6 1006.1 202.7 1004.5 207.9	9048 9037 9027	1013.5 1011.8 1010.2	198.9 204.0 209.2	9105 9093 908 2	1019.2 1017.5 1015.9	200.1 205.2 210.5	9161 9149 9138	1025.0 1023.3 1021.7	206.5
114 113 112	1.426 1.386 1.347	8959 8948 8938	1002.9 213.2 1001.3 218.7 999.7 224.4	9004	1008.6 1007.0 1005.4	220.1	9071 9060 9049	1014.3 1012.7 1011.1	215.9 221.4 227.2	9127 9115 9104	1020.1 1018.4 1016.8	217.2 222.8 228.6
111 110 109	1.308 1.271 1.235	8926 8916 8905	998.1 230.3 996.4 236.4 994.8 242.7	8971	1003.8 1002.1 1000.5	237.9	9037 9027 9015	1009.5 1007.8 1006.2	239 4	9093 9082 9070	1015.2 1013.5 1011.9	234.6 240.8 247.2
108 107 106	1.200 1.165 1.131	8894 8883 8872	993.2 249.2 991.6 256.0 989.9 263.0	8938	998.9 997.3 995.6	257.6	9004 8993 8982	1004.5 1002.9 1001.2	252.3 259.2 266.2	9059 9048 9037	1010.2 1008.6 1006.9	253.8 260.8 267.8
105 104 103	1.098 1.066 1.035	8862 8850 8840	988.3 270.1 986.7 277.5 985.1 285.0	8916 8905 8894	994.0 992.3 990.7	279.2	8971 8959 8949	999.6 997.9 996.3	280.9	9026 9014 9003	1005.3 1003.6 1002.0	282.6 I
102 101 100	1.005 0.975 0.946	8829 8818 8807	983.4 292.8 981.8 300.8 980.2 309.0	8883 8873 8861	989.1 987.4 985.7	302.6	8938 8927 8915	994.7 993.0 991.3	304.5	8992 8981 8969	1000.3 998.6 9 96.9	306.3
99 98 97	0.918 0.891 0.864	8796 8786 8775	978.6 317.5 976.9 326.2 975.3 335.3	8850 8839 8828	984.1 982.5 980.9	319.4 328.2 337.3	8904 8893 8882	989.7 988.0 986.4	339.4	8958 8947 8936	995.3 993.6 992.0	332.2
96 95 94	0.838 0.813 0.788	8764 8753 8743	973.7 344.7 972.1 354.3 970.4 364.3	8818 8807 8796	979.3 977.7 976.0	346.8 356.5 366.5	8871 8860 8849	984.8 983.2 981.5	348.9 358.7 368.7	8925 8914 8902	990.4 988.8 987.1	351.0 360.8 371.0
93 92 91	0.764 0.741 0.718	8732 8721 8710	968.8 374.7 967.2 385.5 965.5 396.7	8785 8774 8763	974.4 972.7 971.0	377.0 387.8 399.1	8838 8827 8816	979.9 978.2 976.5	390.1	8891 8880 8869	985.4 983.7 982.0	381.5 392.5 403.9
90 89 88	0.696 0.675 0.654	8699 8688 8678	963.8 408.2 962.2 420.0 960.5 432.1	8752 8741 8730	969.3 967.7 966.0	410.6 422.5 434.8	8805 8794 8783	974.8 973.2 971.5	125.1	8858 8846 8835	980.3 978.6 976.9	427.6
87 86 85	0.633 0.613 0.594	8667 8656 8645	958.9 444.6 957.2 457.0 955.6 470.3	8719 8708 8697	964.4 962.7 961.0	459.8	8772 8761 8750	969.8 968.1 966.4	162.6	8824 8813 8802	975.3 973.6 971.9	452.7 465.3 478.8

id id	onuque e		1.80			1.81			1.82			1.83	
Temperature, Degrees Fahr.	Pressure, Pounds per Square Inch.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.	Quality.	Heat Con- tents.	Specific Volume.
132 131 130	2.341 2.280 2.220	9386 9375 9364	1055.2 1053.5 1051.9	140.3 143.6 147.1	9445 9433 9422	1061.1 1059.4 1057.8	141.2 144.5 148.0	9503 9491 9480	1067.0 1065.4 1063.7	142.1 145.4 148.9	9561 9549 9538	1072.9 1071.3 1069.6	142.9 146.3 149.8
129 128 127	2.161 2.103 2.047	9353 9342 9330	1050.3 1048.7 1047.1	150.7 154.3 158.1	9411 9399 9388	1056.2 1054.6 1053.0	151.6 155.3 159.0	9468 9457 9445	1062.1 1060.4 1058.8	152.5 156.2 160.0	9526 9514 9503	1068.0 1066.3 1064.7	153.5 157.2 161.0
126 125 124	1.992 1.938 1.886	9319 9307 9296	1045.4 1043.8 1042.2	162.0 166.0 170.0	9376 9365 9353	1051.3 1049.7 1048.0	163.0 167.0 171.1	9433 9422 9410	1057.1 1055.5 1053.8	164.0 168.0 172.1	9491 9479 9467	1063.0 1061.4 1059.7	164.9 169.0 173.2
123 122 121	1.835 1.785 1.737	9285 9273 9263	1040.6 1038.9 1037.3	183.2	9342 9330 9319	1046.4 1044.7 1043.1	175.3 179.8 18 4 .3	9398 9387 9376	1052.2 1050.5 1048.9	185.5	9455 9444 9433	1058.1 1056.3 1054.7	
120 119 118	1.689 1.642 1.597	9251 9240 9229	1035.7 1034.1 1032.4		9308 9296 9285	1041.5 1039.9 1038.2	188.9 193.7 198.6	9364 9352 9341	1047.2 1045.6 1044.0	199.8	9421 9409 9397	1053.0 1051.4 1049.7	191.2 196.1 201.0
117 116 115	1.552 1.509 1.467	9217 9205 9194	1030.8 1029.1 1027.5	213.1	9273 9262 9250	1036.5 1034.8 1033.2	209.0 214.4	9329 9318 9306	1042.3 1040.6 1039.0	215.7	9385 9374 9362	1048.0 1046.3 1044.7	$211.6 \\ 217.0$
114 113 112	1.426 1.386 1.347	9183 9171 9160	1025.8 1024.2 1022.5	230.0	9238 9227 9215	1031.5 1029.9 1028.2	219.9 225.5 231.4	9294 9282 9271	1037.3 1035.6 1033.9	232.8	9350 9338 9326	1043.0 1040.4 1039.7	234.2
111 110 109	1.308 1.271 1.235	9148 9137 9125	1020.9 1019.2 1017.6	248.8	9203 9192 9180	1026.6 1024.9 1023.3	237.4 243.8 250.3	9259 9248 9236	1032.3 1030.6 1028.9	251.8	9314 9303 9291	1038.0 1036.3 1034.7	
108 107 106	1.200 1.165 1.131	9114 9103 9091	1015.9 1014.3 1012.6	255.4 262.3 269.5	9169 9157 9146	1021.6 1019.9 1018.2	263.9	9224 9212 9201	1027.2 1025.6 1023.9	272.7	9279 9267 9256	1032.9 1031.2 1029.5	260.0 267.1 274.3
105 104 103	1.098 1.066 1.035	9080 9068 9057	1010.9 1009.2 1007.6	276.8 284.3 292.0	9135 9123 9112	1016.5 1014.8 1013.2	278.4 286.0 293.8	9189 9177 9166	1022.2 1020.5 1018.8	280.1 287.7 295.5	924 4 9232 9221	1027.8 1026.1 1024.5	289.4
102 101 100	1.005 0.975 0.946	9046 9035 9023	1005.9 1004.2 1002.5	300.0 308.2 316.5	9100 9089 9077	1011.5 1009.8 1008.1	310.0 318.4	9155 9143 9131	1017.1 1015.4 1013.7	303.6 311.9 320.3	9209 9197 9185	1022.8 1021.1 1019.3	305.4 313.7 322.2
99 98 97	0.918 0.891 0.864	9012 9001 8989	1000.9 999.2 997.6	325.2 334.2 343.5	9066 9055 9043	1006.5 1004.8 1003.2	327.2 336.2 345.5	9120 9108 9097	1012.0 1010.3 1008.7	329.1 338.2 347.6	9174 9162 9150	1017.6 1015.9 1014.3	331.1 340.2 349.6
96 95 94	0.838 0.813 0.788	8978 8967 8956	996.0 994.3 992.6	353.1 363'.0 373.2	9032 9020 9009	1001.5 999.8 998.1	355.2 365.1 375.4	9085 9074 9062	1007.1 1005.4 1003.7	357.3 367.3 377.6	9139 9127 9115	1012.6 1010.9 1009.2	3 69 .5
93 92 91	0.764 0.741 0.718	8945 8933 8922	990.9 989.2 987.5	383.8 394.8 406.3	8998 8986 8975	996.4 994.7 993.0	397.2	9051 9039 9027	1001.9 1000.2 998.5	388.4 399.5 411.1	9104 9092 9080	1007.5 1005.8 1004.1	401.9
90 89 88	0.696 0.675 0.654	8910 8899 8888	985.8 984.1 982.4	430.2	8963 8952 8940	991.3 989.6 987.9	420.6 432.7 445.2	9016 9004 8993	996.8 995.1 993.4	423.0 435.3 447.8	9069 9057 9045	1002.3 1000.6 998.8	425.5 437.8 450.4
87 86 85	0.633 0.613 0.594	8877 8865 8854	980.7 979.0 977.3	468.1	8929 8918 8906	986.2 984.5 982.8	458.1 470.8 484.5	8982 8970 8958	991.7 990.0 988.2	460.8 473.6 487.3	9034 9022 9010	997.1 995.4 993.7	463.4 476.4 490.2

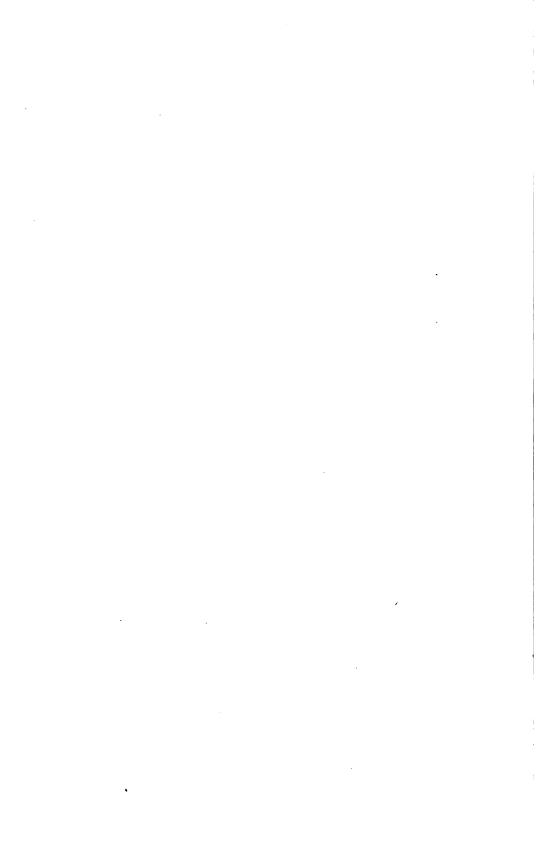
NAPERIAN LOGARITHMS.

e = 2.7182818

 $\log e = 0.4342945 = M$

	0	1	2	3	4	5	6	7	8	9
1.0	0. 0000	0.00995	0.01980	0.02956	0.03922	0.04879	0.05827	0. 06766	0.07696	0.08618
1.1 1.2 1.3	0.09531 0.1823 0.2624	0. 1044 0. 1906 0. 2700	0.1133 0.1988 0.2776	0.1222 0.2070 0.2852	0. 1310 0. 2151 0. 2927	0.1398 0.2231 0.3001	0.1484 0.2311 0.3075	0. 1570 0. 2390 0. 3148	0. 1655 0. 2469 0. 3221	0. 1739 0. 2546 0. 3293
1.4 1.5 1.6	0.3365 0.4055 0.4700	0.3436 0.4121 0.4762	0.3507 0.4187 0.4824		0.3646 0.4318 0.4947	0.3716 0.4382 0.5008	0. 3784 0. 4447 0. 5068	0.3853 0.4511 0.5128	0.3920 0.4574 0.5188	0.3988 0.4637 0.5247
1.7 1.8 1.9	0.5306 0.5878 0.6418		0.5988	0.6043	0.6098		0.5653 0.6206 0.6729	0.6259	0. 5766 0. 6313 0. 6831	0.5822 0.6366 0.6881
2.0	0.6931	0.6981	0.7031	0.7080	0.7129	0.7178	0.7227	0.7275	0.7324	0, 7372
2.1 2.2 2.3	0.7884	0.7930	0.7975	0.8020	0.8065	0.8109	0.8154	0.8198	0.8242	0.7839 0.8286 0.8713
2.4 2.5 2.6	0.9163	0.9203	0.9243	0.9282	0.9322	0.9361	0.9400	0.9439	0.9478	0.9123 0.9517 0.9895
2.7 2.8 2.9	1.0296	1.0332	1.0367	1.0403	1.0438	1.0473	1:0508	1.0543	1.0578	1.0260 1.0613 1.0953
3.0	1.0986	1.1019	1. 1053	1.1086	1.1119	1.1151	1.1184	1.1217	1.1249	1.1282
3.1 3.2 3.3	1.1632	1.1663	1.1694	1.1725	1.1756	1.1787	1.1817	1.1848	1.1878	1.1600 1.1909 1. 22 08
3.4 3.5 3.6	1.2528	1.2556	1. 2585	1. 2613	1.2641	1. 2669	1. 2698	1. 2726	1.2470 1.2754 1.3029	1.2499 1.2782 1.3056
3.7 3.8 3.9	1.3083 1.3350 1.3610	1.3376 🗀	1.3137 1.3403 1.3661	1.3164 1.3429 1.3686	1.3455	1.3481	1.3244 1.3507 1.3762	1.3271 1.3533 1.3788	1.3558	1.3324 1.3584 1.3838
4.0	1.3863	1.3888	1.3913	1. 3938	1.3962	1.3987	1.4012	1.4036	1.4061	1.4085
4.1 4.2 4.3	1.4351	1.4375	1.4398	1.4422 1	1.4446	1.4469	1.4493	1.4516	L. 4540	1.4327 1.4563 1.4793
4.4 4.5 4.6	1.5041	1.5063	1.5085	1.5107	1.5129	. 5151	1.5173	. 5195 1	1.5217	1.5019 1.5239 1.5454
4.7 4.8 4.9	1.5686	1.5707	l. 5728 1	1.5748 1	1.5769 1	. 5790 1	. 5810	. 5831	1.5851	1.5665 1.5872 1.6074
5,0	1.6094	1.6114	. 6134	1.6154	1.6174	. 6194	. 6214	. 6233	1.6253	. 6273
5.2	1.6487	1.6506	. 6525	. 6544 1	. 6563	. 6582 1	. 6601 1	. 6620 1	1.6639 1	. 6467 . 6658 . 6845
5.5	1.7047	1.7066 1	. 7884 1	. 7102 1	. 7120 1	. 7138 1	. 7156 1	.7174 1	. 7192 1	. 7029 . 7210 . 7387

NAPERIAN LOGARITHMS.


	o	1	2.	3	4	5	6	7	8	9
5.7 5.8 5.9	1.7405 1.7579 1.7750	1.7422 1.7596 1.7766	1.7440 1.7613 1.7783	1.7457 1.7630 1.7800	1.7475 1.7647 1.7817	1.7492 1.7664 1.7834	1.7509 1.7681 1.7851	1.7527 1.7699 1.7867	1.7544 1.7716 1.7884	1.7561 1.7733 1.7901
6.0	1.7918	1.7934	1.7951	1.7967	1.7984	1.8001	1.8017	1.8034	1.8050	1.8066
6.1 6.2 6.3	1.8083 1.8245 1.8405	1.8099 1.8262 1.8421	1.8116 1.8278 1.8437	1.8132 1.8294 1.8453	1.8148 1.8310 1.8469	1.8165 1.8326 1.8485	1.8181 1.8342 1.8500	1.8197 1.8358 1.8516	1.8213 1.8374 1.8532	1.8229 1.8390 1.8547
6.4 6.5 6.6	1.8563 1.8718 1.8871	1.8579 1.8733 1.8886	1.8594 1.8749 1.8901	1.8610 1.8764 1.8916	1.8625 1.8779 1.8931	1.8641 1.8795 1.8946	1.8656 1.8810 1.8961	1.8672 1.8825 1.8976	1.8687 1.8840 1.8991	1.8703 1.8856 1.9006
	1.9021 1.9169 1.9315	1.9036 1.9184 1.9330	1.9051 1.9199 1.9344	1.9066 1.9213 1.9359	1.9081 1.9228 1.9373	1.9095 1.9242 1.9387	1.9110 1.9257 1.9402	1.9125 1.9272 1.9416	1.9140 1.9286 1.9430	1.9155 1.9301 1.9445
7.0	1.9459	1.9473	1.9488	1.9502	1.9516	1.9530	1.9544	1.9559	1.9573	1.9587
7.2		1.9615 1.9755 1.9892	1.9629 1.9769 1.9906	1.9643 1.9782 1.9920	1.9657 1.9796 1.9933	1.9671 1.9810 1.9947	1.9685 1.9824 1.9961	1.9699 1.9838 1.9974	1.9713 1.9851 1.9988	1.9727 1.9865 2.0001
7.5	2.0149	2.0028 2.0162 2.0295	2.0042 2.0176 2.0308	2.0055 2.0189 2.0321	2.0069 2.0202 2.0334	2.0082 2.0215 2.0347		2.0242	2.0122 2.0255 2.0386	2.0136 2.0268 2.0399
7.8	2.0541		2.0438 2.0567 2.0694	2.0451 2.0580 2.0707	2.0464 2.0592 2.0719	2.0477 2.0605 2.0732	2.0618	2.0631	2.0516 2.0643 2.0769	2.0528 2.0656 _2.0782
8.0	2.0794	2.0807	2.0819	2.0832	2.0844	2.0857	2.0869	2.0881	2.0894	2.0906
8.2	2.1041	2.1054	2.0943 2.1066 2.1187	2.0956 2.1078 2.1199	2.1090	2.1102	2.1114	2.1126	2. 1017 2. 1138 2. 1258	2. 1029 2. 1150 2. 1270
8.5	2.1401	2. 1294 2. 1412 2. 1529	2.1424	2. 1318 2. 1436 2. 1552			2.1471	2.1483	2.1377 2.1494 2.1610	2.1389 2.1506 2.1622
8.8	2.1748	2.1759	2. 1770	2.1668 2.1782 2.1894	2. 1679 2. 1793 2. 1905	2.1804	2. 1815	2.1827	2. 1725 2. 1838 2. 1950	2. 1736 2. 1849 2. 1961
9.0	2. 1972	2. 1983	2.1994	2. 2006	2. 2017	2. 2028	2. 2039	2. 2050	2. 2061	2.2072
9.2	2.2192	2. 2203	2. 2214	2. 2116 2. 2225 2. 2332	2. 2235	2. 2246	2. 2257	2. 2268	2. 2170 2. 2279 2. 2386	2. 2181 2. 2289 2. 2396
9.5	2. 2513	2. 2523	2. 2534	2.2544	2. 2555	2. 2565	2. 2576	2. 2586	2. 2492 2. 2597 2. 2701	2. 2502 2. 2607 2. 2711
9.8	2. 2824	2.2834	2. 2844	2.2854	2.2865	2. 2875	2. 2885	2.2895	2. 2803 2. 2905 2. 3006	2.2814 2.2915 2.3016
10.0	2.3026									

LOGARITHMS.

												_	Pro	por	tion	al l	Par	ts.	
Nat, Nos.	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
10 11 12 13 14	0000 0414 0792 1139 1461	0453 0828 1173	0086 0492 0864 1206 1523	0531 0899 1239	0569 0934 1271	0607 0969 1303	0253 0645 1004 1335 1644	0682 1038 1367	0334 0719 1072 1399 1703	1106 1430	3 3	8	11 10 10	15 14 13	19 17 16	23 21 19	26 24 23	33 30 28 26 24	34 31 29
15 16 17 18 19	1761 2041 2304 2553 2788	2068 2330 2577	1818 2095 2355 2601 2833	2122 2380 2625	2148 2405 2648	2175 2430 2672	1931 2201 2455 2695 2923	2227 2480 2718	1987 2253 2504 2742 2967	2279 2529 2765	3 2 2	6 5 5 4	8	11 10 9		16 15 14	18 17 16	22 21 20 19 18	25 24 22 21 20
20 21 22 23 24	3010 3222 3424 3617 3802	3243 3444 3636	3054 3263 3464 3655 3838	3284 3483 3674	3304 3502 3692	3324 3522 3711	3139 3345 3541 3729 3909	3365 3560 3747	3181 3385 3579 3766 3945	3 404 3598 3784	2 2 2	4 4 4 4	6 6 6 5	8 8 8 7 7	10 10 9	12 12 11	14 14 13	15	19 18 17 17
25 26 27 28 29	3979 4150 4314 4472 4624	4166 4330 4487	4014 4183 4346 4502 4654	4200 4362 4518	4216 4378	4232 4393 4548	4564	4265 4425 4579	4116 4281 4440 4594 4742	4298 4456 4609	2 2 2	3 3 3 3	5 5 5 4	7 7 6 6 6	9 8 8 8 7	9	11 11 11	13 13 12	15 15 14 14 13
30 31 32 33 34	4771 4914 5051 5185 5315	4928 5065 5198	4800 4942 5079 5211 5340	4955 5092 5224	4829 4969 5105 5237 5366	4983 5119 5250	499 7 5132 5 26 3	5011 5145 5276	4886 5024 5159 5289 5416	5038 5172 5302	1	3	4 4 4	6 5	7 7 7 6 6		9	11 11 10	13 12 12 12 12
35 36 37 38 39	5441 5563 5682 5798 5911	5575 5694 5809	5465 5587 5705 5821 5933	5599 5717 5832	5490 5611 5729 5843 5955	5623 5740 5855	5752 5866	5647 5763	5539 5658 5775 5888 5999	5670 5786 5899	1 1 1	2 2 2 2 2	4 4 3 3 3	5 5 5 4	6 6 6 5	7 7 7 7 7	-	10 9 9	11 11 10 10 10
40 41 42 43 44	6021 6128 6232 6335 6435	6138 6243 6345	6042 6149 6253 6355 6454	6160 6263 6365	6064 6170 6274 6375 6474	6180 6284 6385	6191 6294 6395	6201 6304 6405	6107 6212 6314 6415 6513	6222 6325 6425	1 1 1	2 2 2 2 2	3 3 3 3	4 4 4 4	5 5 5 5	6 6 6 6	8 7 7 7 7	9 8 8 8	10 9 9 9
45 46 47 48 49	6532 6628 6721 6812 6902	6637 6730 6821	6551 6646 6739 6830 6920	6656 6749 6839	6571 6665 6758 6848 6937	6675 6767 6857	6684 6776 6866	6693 6785 6875	6609 6702 6794 6884 6972	6712 6803 6893	1 1 1	2 2 2 2 2	3 3 3 3	4 4 4 4	5 5 4 4	6 5 5 5	7 7 6 6 6	8 7 7 7	9 8 8 8
50 51 52 53 54	6990 7076 7160 7243 7324	7084 7168 7251	7007 7093 7177 7259 7340	7101 7185 7267	7024 7110 7193 7275 7356	7118 7202 7284	7126 7210 7292	7135 7218 7300	7059 7143 7226 7308 7388	7152 7235 7316	1 1 1	2 2 2 2 2	3 3 2 2 2		4 4 4 4	5 5 5 5 5	6 6 6 6	7 7 7 6 6	8 8 7 7

LOGARITHMS.

N-4													Pr	por	tion	al I	art	5.	_
Nat. Nos.	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
55 5 6 57 58 59	7404 7482 7559 7634 7709	7490 7566 7642	7497 7574 7649	7427 7505 7582 7657 7731	7513 7589 7664	7520 7597 7672	7451 7528 7604 7679 7752	7536 7612 7686	7466 7543 7619 7694 7767	7551 7627 7701	1 1 1		2 2 2	3 3 3 3	4 4 4 4	5 5 4 4		6 6 6 6	7 7 7 7
60 61 62 63 64	7782 7853 7924 7993 8062	7860 7931 8000	7868 7938 8007	7803 7875 7945 8014 8082	7882 7952 8021	7889 7959 8028	7825 7896 7966 8035 8102	7903 7973 8041	7839 7910 7980 8048 8116	7917 7987 8055	1 1 1 1	1	2 2 2 2 2	3 3 3 3	4 4 3 3 3	4 4 4 4	5 5 5 5 5	6 6 5 5	6 6 6 6
65 66 67 68 69	8129 8195 8261 8325 8388	8202 8267 8331	8209 8274	8149 8215 8280 8344 8407	8222 8287 8351	8228 8293 8357	81 6 9 8235 8299 8363 8426	8241 8306 8370	8182 8248 8312 8376 8439	8254 8319 8382		1	2 2	3 3 3 2	3 3 3 3	4 4 4 4	5 5 5 4 4	5 5 5 5 5	6 6 6 6
70 71 72 73 74	8451 8513 8573 8633 8692	8519 8579 8639	8463 8525 8585 8645 8704	8591 8651	8476 8537 8597 8657 8716	8543 8603 8663	8549 8609 8669	8555 8615 8675	8500 8561 8621 8681 8739	8567 8627 8686	1 1 1	1	2 2	2 2 2 2 2 2	3 3 3 3	4 4 4 4	4 4 4 4	5 5 5 5 5	6 5 5 5
75 76 77 78 79	8751 8808 8865 8921 8976	8814 8871 8927	8762 8820 8876 8932 8987	8825 8882 8 93 8	8774 8831 8887 8943 8998	8837 8893 8949	8842 8899 8954	8848 8904	8797 8854 8910 8965 9020	8859 8915 8971	1 1 1	1 1 1 1	2 2 2	2 2 2 2 2	3 3 3 3	3 3 3 3 3	4 4 4 4	5 5 4 4	5 5 5 5 5
82 83	9031 9085 9138 9191 9243	9090 91 4 3	9042 9096 9149 9201 9253	9101 9154 9206	9053 9106 9159 9212 9263	9112 9165 9217	9117 9170 9222	9069 9122 9175 9227 9279	9128 9180 9232	9133 9186 9238	1 1 1	1 1 1 1 1	2 2 2	2 2 2 2 2	3 3 3 3	3 3 3 3	4 4 4 4	4 4 4 4	5 5 5 5 5
86 87 88	9294 9345 9395 9445 9494	9299 9350 9400 9450 9499	9355 9405 9455	9360 9410 9460	9315 9365 9415 9465 9513	9370 9420 9469	9375 9425 9474	9330 9380 9430 9479 9528	9385 9435 9484	9390 9440 9489	1 0 0	1 1 1 1	2 1 1	2 2 2 2 2	3 2 2 2	3 3 3 3	4 4 3 3 3	4 4 4 4	5 5 4 4 4
91 92 93	9542 9590 9638 9685 9731	9547 9595 9643 9689 9736	9600 9647 9694	9605 9652 9699	9562 9609 9657 9703 9750	9614 9661 9708	9619 9666 9713	9576 9624 9671 9717 9763	9628 9675 9722	9633 9680 9727	0 0	1 1 1 1 1	1 1 1	2 2 2 2 2	2 2 2 2 2	3 3 3 3	3 3 3 3	4 4 4 4	4 4 4 4
96 97 98	9777 9823 9868 9912 9956	9782 9827 9872 9917 9961	9832 9877 9921	9836 9881 9926	9795 9841 9886 9930 9974	9845 9890 9934	9850 9894 9939	9809 9854 9899 9943 9987	9859 9903 99 4 8	9863 9908 9952	0 0	1 1 1 1 1	1 1 1	2 2 2 2 2	2 2 2 2 2	3 3 3 3	3 3 3 3 3	4 4 4 4 3	4 4 4 4

SHORT-TITLE CATALOGUE

OF THE

PUBLICATIONS

OF

JOHN WILEY & SONS

New York

LONDON: CHAPMAN & HALL, LIMITED

ARRANGED UNDER SUBJECTS

Descriptive circulars sent on application. Books marked with an asterisk (*) are sold at net prices only. All books are bound in cloth unless ofherwise stated.

AGRICULTURE—HORTICULTURE—FORESTRY.

Armsby's Principles of Animal Nutrition8vo.	• 4	00
Budd and Hansen's American Horticultural Manual:	44	w
		50
Part I. Propagation, Culture, and Improvement		
Part II. Systematic Pomology		50
Elliott's Engineering for Land Drainage		50
Practical Farm Drainage. (Second Edition, Rewritten)12mo,		50
Graves's Forest Mensuration8vo,		00
Green's Principles of American Forestry		50
Grotenfelt's Principles of Modern Dairy Practice. (Woll.)12mo,	2	00
* Herrick's Denatured or Industrial Alcohol	4	00
Kemp and Waugh's Landscape Gardening. (New Edition, Rewritten. In Preparation).		
* McKay and Larsen's Principles and Practice of Butter-making8vo,	1	50
Maynard's Landscape Gardening as Applied to Home Decoration 12mo,		50
Sanderson's Insects Injurious to Staple Crops12mo,		50
Sanderson and Headlee's Insects Injurious to Garden Crops. (In Preparation).	•	•
* Schwarz's Longleaf Pine in Virgin Forests	1	25
Stockbridge's Rocks and Soils		50
Winton's Microscopy of Vegetable Foods8vo,		50
Woll's Handbook for Farmers and Dairymen		50
Tomo,	•	30
ARCHITECTURE.		
Baldwin's Steam Heating for Buildings	9	50
Berg's Buildings and Structures of American Railroads4to,		00
Birkmire's Architectural Iron and Steel		50
Compound Riveted Girders as Applied in Buildings8vo,		00
Planning and Construction of Associated Theorems	2	00
Planning and Construction of American Theatres	0	50
Planning and Construction of High Office Buildings		
Skeleton Construction in Buildings8vo,	3	00

16mo.	3 00
Carpenter's Heating and Ventilating of Buildings8vo,	-
Carpenter's reasons and ventuating or Duniongs	4 00
* Corthell's Allowable Pressure on Deep Foundations	1 25
Freitag's Architectural Engineering8vo,	3 50
Fireproofing of Steel Buildings	2 50
Gerhard's Guide to Sanitary Inspections. (Fourth Edition, Entirely Re-	
vised and Enlarged)	1 50
* Modern Baths and Bath Houses8vo,	3 00
Sanitation of Public Buildings	1 50
Theatre Fires and Panics	1 50
Johnson's Statics by Algebraic and Graphic Methods	2 00
Kellaway's How to Lay Out Suburban Home Grounds	
Wilde's Askitasts' and Builden' Balast health 18	2 00
Kidder's Architects' and Builders' Pocket-book	5 00
Merrill's Stones for Building and Decoration8vo,	5 00
Monckton's Stair-building4to,	4 00
Patton's Practical Treatise on Foundations8vo,	5 00
Peabody's Naval Architecture8vo.	7 50
Rice's Concrete-block Manufacture8vo.	2 00
Richey's Handbook for Superintendents of Construction 16mo, mor.	4 00
Building Foreman's Pocket Book and Ready Reference 16mo, mor.	5 00
* Building Mechanics' Ready Reference Series:	3 00
* Carpenters' and Woodworkers' Edition16mo, mor.	1 50
* Cement Workers' and Plasterers' Edition 16mo, mor.	1 50
* Plumbers', Steam-Fitters', and Tinners' Edition 16mo, mor.	1 50
* Stone- and Brick-masons' Edition16mo, mor.	1 50
Sabin's House Painting	1 00
Siebert and Biggin's Modern Stone-cutting and Masonry8vo.	1 50
Snow's Principal Species of Wood	3 50
Towne's Locks and Builders' Hardware	3 00
Wait's Engineering and Architectural Jurisprudence	6 00
	6 50
Law of Contracts8vo,	3 00
Law of Operations Preliminary to Construction in Engineering and Archi-	
tecture8vo,	5 00
tecture8vo,	
tecture 8vo, Sheep, Sheep, Wilson's Air Conditioning 12mo,	
tecture	.5 50 .1 50
tecture	.5 50 .1 50 l.
tecture	.5 50 .1 50
tecture	.5 50 .1 50 l.
tecture	.5 50 .1 50 l. 1 25
tecture	5 50 1 50 1. 1 25
tecture	5 50 1 50 1. 1 25 2 50
tecture	5 50 1 50 1. 1 25 2 50 2 50
tecture	5 50 1 50 1. 1 25 2 50 2 50 3 00
kecture	5 50 1 50 1. 1 25 2 50 2 50 3 00 2 00
tecture	5 50 1 50 1. 1 25 2 50 2 50 3 00
tecture	5 50 1 50 1. 1 25 2 50 2 50 3 00 2 00
Section	5 50 1 50 1 25 1 25 2 50 2 50 3 00 1 50
tecture	5 50 1 50 1 25 1 25 2 50 2 50 3 00 2 00 1 50 3 50 3 00
tecture	5 50 1 50 1 25 1 25 2 50 2 50 2 00 1 50 3 50 2 50
tecture	5 50 1 50 1. 1 25 2 50 2 50 3 00 2 00 2 00 3 50 3 50 3 00 7 00
tecture	5 50 1 50 1. 1 25 1 25 2 50 2 50 2 00 1 50 3 00 2 00 1 50 3 50 3 00 2 50 2 50 2 50
tecture	5 50 1 50 1. 1 25 2 50 2 50 3 00 1 50 3 50 2 50 7 00 2 50 2 50
tecture	5 50 1 50 1 25 1 25 2 50 2 50 3 00 2 00 1 50 3 50 3 50 3 50 2 7 00 2 90 2 50 2 50 2 50 3 50 3 50 5 50 5 50 5 50 5 50 5 50 5
tecture	5 50 1 50 1 25 1 25 2 50 2 50 2 00 1 50 3 00 2 00 2 50 3 50 3 50 2 50 2 50 3 50 3 50 3 50 3 50 3 50 3 50 3 50 5 50 5
tecture	5 50 1 50 1. 1 25 1. 25 2 50 2 50 2 50 3 50 2 50 3 50 2 50 7 00 2 50 2 50 2 50 2 50 3 00 2 50 3 00 3 00 3 00 3 00 3 00 3 00 3 00 3
tecture	5 50 1 50 1 25 1 25 2 50 2 00 2 00 2 00 2 50 2 00 2 50 2 00 2 50 3 00 2 50 2 50 3 00 2 50 3 00 2 50 3 00 2 00 3 00 2 00 3 00 2 00 3 00 3 0
tecture	5 50 1 50 1. 1 25 1. 25 2 50 2 50 2 50 3 50 2 50 3 50 2 50 7 00 2 50 2 50 2 50 2 50 3 00 2 50 3 00 3 00 3 00 3 00 3 00 3 00 3 00 3
tecture	5 50 1 50 1 25 1 25 2 50 2 00 2 00 2 00 2 50 2 00 2 50 2 00 2 50 3 00 2 50 2 50 3 00 2 50 3 00 2 50 3 00 2 00 3 00 2 00 3 00 2 00 3 00 3 0
tecture	5 50 1 50 1 25 1 25 2 50 2 50 2 00 2 00 2 00 2 00 2 50 3 50 3 50 2 50 3 50 3 50 5 50 5 50 5 50 5 50 5 50 5
tecture	5 50 1 50 1. 1 25 1. 25 2 50 2 50 2 50 2 50 2 50 2 50 2 50 2

Briggs's Modern American School Buildings......8vo, \$4 00 Byrne's Inspection of Materials and Wormanship Employed in Construction.

* Ludlow's Logarithmic and Trigonometric Tables	6 7 1 2 4 1 7 2 2 5 1	50 50 00 00 00	
ASSAYING.		÷	
Betts's Lead Refining by Electrolysis		00	
Furman and Pardoe's Manual of Practical Assaying. (Sixth Edition, Re-		50	
vised and Enlarged)8vo,		00	
Lodge's Notes on Assaying and Metallurgical Laboratory Experiments. 8vo,		00	
Low's Technical Methods of Ore Analysis		00 00	
Manual of Assaying		00	
Minet's Production of Aluminum and its Industrial Use. (Waldo.)12mo,		50	
O'Driscoll's Notes on the Treatment of Gold Ores		00	
Ricketts and Miller's Notes on Assaying8vo,		00	
Robine and Lenglen's Cyanide Industry. (Le Clerc.)8vo,	4	00	
Ulke's Modern Electrolytic Copper Refining8vo,	3	00	
Wilson's Chlorination Process	1	50	
Cyanide Processes12mo,	1	50	
ASTRONOMY.			
Comptable Birld Astronomy for Business		*0	
Comstock's Field Astronomy for Engineers	3	50 50	
Crandall's Text-book on Geodesy and Least Squares	3		
Doolittle's Treatise on Pracical Astronomy	4		
Hayford's Text-book of Geodetic Astronomy	ā		
Hosmer's Azimuth	ĭ		
Merriman's Elements of Precise Surveying and Geodesy8vo,	2		
* Michie and Harlow's Practical Astronomy8vo,	3	00	
Rust's Ex-meridian Altitude, Azimuth and Star-Finding Tables8vo,	5	00	
* White's Elements of Theoretical and Descriptive Astronomy12mo,	2	00	
CHEMISTRY.			
* Abderhalden's Physiological Chemistry in Thirty Lectures. (Hall and.		•	
Defren)8vo,	_	00	
* Abegg's Theory of Electrolytic Dissociation. (von Ende.)12mo,		25-	
Alexeyeff's General Principles of Organic Syntheses. (Matthews.)8vo,		00 [,]	
Allen's Tables for Iron Analysis	3		
Armsby's Principles of Animal Nutrition	4		
Arnold's Compendium of Chemistry. (Mandel.)	3	50	
Meeting, 1906	3	00	
Jamestown Meeting, 1907	3		
3	•	•	
δ			

•

Austen's Notes for Chemical Students	\$ 1	50
Bernadou's Smokeless Powder.—Nitro-cellulose, and Theory of the Cellulose Molecule	2	50
Biltz's Introduction to Inorganic Chemistry. (Hall and Phelan). (In Press). Laboratory Methods of Inorganic Chemistry. (Hall and Blanchard).	_	00
8vo,		00
* Blanchard's Synthetic Inorganic Chemistry	1	00
* Browning's Introduction to the Rarer Elements	1	50 00
Classen's Quantitative Chemical Analysis by Electrolysis. (Boltwood.).8vo,	_	00
Cohn's Indicators and Test-papers		00
Tests and Reagents8vo,		00
* Danneel's Electrochemistry. (Merriam.)		25
Duhem's Thermodynamics and Chemistry (Rurgess) Syo		00 00
Duhem's Thermodynamics and Chemistry. (Burgess.)	_	00
Eissler's Modern High Explosives8vo,	4	00
Erdmann's Introduction to Chemical Preparations. (Dunlap.)12mo, * Fischer's Physiology of Alimentation		
Fischer's Physiology of Alimentation Large 12mo, Fletcher's Practical Instructions in Quantitative Assaying with the Blowpipe.	2	00
12mo, mor.	1	50
Fowler's Sewage Works Analyses		00
Fresenius's Manual of Qualitative Chemical Analysis. (Wells.)8vo,		00
Manual of Qualitative Chemical Analysis. Part I. Descriptive. (Wells.)8vo	, 3	00
Quantitative Chemical Analysis. (Cohn.) 2 vols	12	5 0
Fuertes's Water and Public Health	1	50
Furman and Pardoe's Manual of Practical Assaying. (Sixth Edition, Revised and Enlarged.)8vo.	-	-
Revised and Enlarged.)8vo,		00
* Getman's Exercises in Physical Chemistry		00
Gill's Gas and Fuel Analysis for Engineers		25
Grotenfelt's Principles of Modern Dairy Practice. (Woll.)12mo,		25 00
Groth's Introduction to Chemical Crystallography (Marshall)12mo,		25
Hammarsten's Text-book of Physiological Chemistry. (Mandel.)8vo,		00
Hanausek's Microscopy of Technical Products. (Winton.)8vo,		00
* Haskins and Macleod's Organic Chemistry		00 59
Hering's Ready Reference Tables (Conversion Factors)16mo, mor. * Herrick's Denatured or Industrial Alcohol8vo,		00
Hinds's Inorganic Chemistry8vo,		00
* Laboratory Manual for Students12mo,	1	00
* Holleman's Laboratory Manual of Organic Chemistry for Beginners.		
(Walker.)		00 50
Text-book of Organic Chemistry. (Walker and Mott.)		50
Text-book of Organic Chemistry. (Walker and Mott.)		00
Holley and Ladd's Analysis of Mixed Paints, Color Pigments, and Varnishes.	_	
Large 12mo,		50 00
Hopkins's Oil-chemists' Handbook		25
Johnson's Rapid Methods for the Chemical Analysis of Special Steels, Steel-		00
making Alloys and GraphiteLarge 12mo, Landauer's Spectrum Analysis. (Tingle.)8vo,		00
* Langworthy and Austen's Occurrence of Aluminum in Vegetable Products, Animal Products, and Natural Waters8vo,		00
Lassar-Cohn's Application of Some General Reactions to Investigations in Organic Chemistry. (Tingle.)		00
Leach's Inspection and Analysis of Food with Special Reference to State		50
Control		50 00
Lodge's Notes on Assaying and Metallurgical Laboratory Experiments8vo,		00
Low's Technical Method of Ore Analysis8vo,	3	00
Lunge's Techno-chemical Analysis. (Cohn.)		00
* McKay and Larsen's Principles and Practice of Butter-making8vo, Maire's Modern Pigments and their Vehicles12mo,		50 00

Mandel's Handbook for Bio-chemical Laboratory12mo,	\$ 1	50
* Martin's Laboratory Guide to Qualitative Analysis with the Blowpipe		
12mo	. 0	6 0
Mason's Examination of Water. (Chemical and Bacteriological.)12mo,	1	25
Water-supply. (Considered Principally from a Sanitary Standpoint.)	-	
8vo.	4	00
* Mathewson's First Principles of Chemical Theory8vo,		00
Matthews's Laboratory Manual of Dyeing and Textile Chemistry8vo,		5 0
Textile Fibres. 2d Edition, Rewritten	4	00
* Meyer's Determination of Radicles in Carbon Compounds. (Tingle.)		
Third Edition		25
Miller's Cyanide Process. 12mo, Manual of Assaying. 12mo,		00
Manual of Assaying12mo,		00
Minet's Production of Aluminum and its Industrial Use. (Waldo.)12mo,	2	50
Mixter's Elementary Text-book of Chemistry	1	50
Morgan's Elements of Physical Chemistry12mo,	3	00
Outline of the Theory of Solutions and its Results	1	00
* Physical Chemistry for Electrical Engineers	1	50
Morse's Calculations used in Cane-sugar Factories16mo, mor.		50
* Muir's History of Chemical Theories and Laws		00
Mulliken's General Method for the Identification of Pure Organic Compounds.	*	00
Vol. I. Compounds of Carbon with Hydrogen and Oxygen. Large 8vo.		00
	Ð	00
Vol. II. Nitrogenous Compounds. (In Preparation).		
Vol. III. The Commercial Dyestuffs. (In Press).		
O'Driscoll's Notes on the Treatment of Gold Ores8vo,		00
Ostwald's Conversations on Chemistry. Part One. (Ramsey.)12mo, Part Two. (Turnbull.)12mo,		50
" " Part Two. (Turnbull.)12mo,	2	00
Owen and Standage's Dyeing and Cleaning of Textile Fabrics12mo,	2	00
* Palmer's Practical Test Book of Chemistry	1	00
* Pauli's Physical Chemistry in the Service of Medicine. (Fischer.)12mo,		25
Penfield's Tables of Minerals, Including the Use of Minerals and Statistics	•	20
of Domestic Production8vo,		00
Pictet's Alkaloids and their Chemical Constitution. (Biddle.)8vo,		
Pictet's Aikaiolds and their Chemical Constitution. (Biddie.)		00
Poole's Calorific Power of Fuels8vo,	3	00
Prescott and Winslow's Elements of Water Bacteriology, with Special Refer-		
ence to Sanitary Water Analysis12mo,		50
* Reisig's Guide to Piece-Dyeing8vo,	25	00
Richards and Woodman's Air, Water, and Food from a Sanitary Stand-		
point8vo.	2	00
Ricketts and Miller's Notes on Assaying8vo,	3	00
Rideal's Disinfection and the Preservation of Food8vo,	4	00
Sewage and the Bacterial Purification of Sewage8vo,		00
Rigg's Elementary Manual for the Chemical Laboratory8vo,		25
Robine and Lenglen's Cyanide Industry. (Le Clerc.)8vo,		00
Ruddiman's Incompatibilities in Prescriptions8vo,		00
Whys in Pharmacy	+	00
Ruer's Elements of Metallography. (Mathewson). (In Press.)		00
Ruer's Elements of Metallography. (Mathewson). (In Press.) Sabin's Industrial and Artistic Technology of Paint and Varnish 8vo.	3	00
Ruer's Elements of Metallography. (Mathewson). (In Press.) Sabin's Industrial and Artistic Technology of Paint and Varnish	3 2	00 00 50
Ruer's Elements of Metallography. (Mathewson). (In Press.) Sabin's Industrial and Artistic Technology of Paint and Varnish8vo, Salkowski's Physiological and Pathological Chemistry. (Orndorff.)8vo, Schimpf's Essentials of Volumetric Analysis	3 2 1	00 00 50 25
Ruer's Elements of Metallography. (Mathewson). (In Press.) Sabin's Industrial and Artistic Technology of Paint and Varnish8vo, Salkowski's Physiological and Pathological Chemistry. (Orndorff.)8vo, Schimp's Essentials of Volumetric Analysis	3 2 1 5	00 50 55 25 00
Ruer's Elements of Metallography. (Mathewson). (In Press.) Sabin's Industrial and Artistic Technology of Paint and Varnish	3 2 1 5	00 50 25 00 25
Ruer's Elements of Metallography. (Mathewson). (In Press.) Sabin's Industrial and Artistic Technology of Paint and Varnish	3 2 1 5 1 2	00 50 55 25 00 25 50
Ruer's Elements of Metallography. (Mathewson). (In Press.) Sabin's Industrial and Artistic Technology of Paint and Varnish	3 2 1 5 1 2 3	00 50 55 25 00 25 50 00
Ruer's Elements of Metallography. (Mathewson). (In Press.) Sabin's Industrial and Artistic Technology of Paint and Varnish	3 2 1 5 1 2 3	00 50 50 25 00 25 50 00 00
Ruer's Elements of Metallography. (Mathewson). (In Press.) Sabin's Industrial and Artistic Technology of Paint and Varnish	3 2 1 5 1 2 3	00 50 50 25 00 25 50 00 00
Ruer's Elements of Metallography. (Mathewson). (In Press.) Sabin's Industrial and Artistic Technology of Paint and Varnish	3 2 1 5 1 2 3 3	00 50 55 25 00 25 50 00 00 50
Ruer's Elements of Metallography. (Mathewson). (In Press.) Sabin's Industrial and Artistic Technology of Paint and Varnish	3 2 1 5 1 2 3 3 2	00 50 50 25 00 25 50 00 00
Ruer's Elements of Metallography. (Mathewson). (In Press.) Sabin's Industrial and Artistic Technology of Paint and Varnish	3 2 1 5 1 2 3 3 2 3	00 00 50 25 00 25 50 00 00 50 50
Ruer's Elements of Metallography. (Mathewson). (In Press.) Sabin's Industrial and Artistic Technology of Paint and Varnish	3 2 1 5 1 2 3 3 2 3 1	00 50 55 25 00 25 50 00 00 50 50
Ruer's Elements of Metallography. (Mathewson). (In Press.) Sabin's Industrial and Artistic Technology of Paint and Varnish	3 2 1 5 1 2 3 3 2 3 3 1 3	00 00 50 25 00 25 50 00 00 50 50 50 00
Ruer's Elements of Metallography. (Mathewson). (In Press.) Sabin's Industrial and Artistic Technology of Paint and Varnish	3 2 1 5 1 2 3 3 2 2 3 3 1 3 4	00 00 50 25 50 00 25 50 00 00 50 50 50 00 00 00 50 5
Ruer's Elements of Metallography. (Mathewson). (In Press.) Sabin's Industrial and Artistic Technology of Paint and Varnish	3 2 1 5 1 2 3 3 2 2 3 3 1 3 4 5	00 00 50 25 50 00 25 50 00 50 50 00 50 00
Ruer's Elements of Metallography. (Mathewson). (In Press.) Sabin's Industrial and Artistic Technology of Paint and Varnish	3 2 1 5 1 2 3 3 3 1 3 4 5 1	00 00 50 25 00 25 50 00 00 50 50 50 00 00 00 00 00 00 50
Ruer's Elements of Metallography. (Mathewson). (In Press.) Sabin's Industrial and Artistic Technology of Paint and Varnish	3 2 1 5 1 2 3 3 3 1 3 4 5 1	00 00 50 25 50 00 25 50 00 50 50 00 50 00
Ruer's Elements of Metallography. (Mathewson). (In Press.) Sabin's Industrial and Artistic Technology of Paint and Varnish	3 2 1 5 1 2 3 3 3 2 3 3 1 3 4 5 1 3	00 00 \$0 25 50 00 25 50 00 00 50 50 00 00 50 50 00 00 00 50 5
Ruer's Elements of Metallography. (Mathewson). (In Press.) Sabin's Industrial and Artistic Technology of Paint and Varnish	3 2 1 5 1 2 3 3 2 2 3 3 1 3 4 4 5 1 3 4	00 00 50 25 00 25 50 00 00 00 50 50 00 00 00 00 50 00 00
Ruer's Elements of Metallography. (Mathewson). (In Press.) Sabin's Industrial and Artistic Technology of Paint and Varnish	3 2 1 5 1 2 3 3 2 2 3 3 1 3 4 4 5 1 3 4	00 00 50 25 00 25 50 00 00 00 50 50 00 00 00 00 50 00 00
Ruer's Elements of Metallography. (Mathewson). (In Press.) Sabin's Industrial and Artistic Technology of Paint and Varnish	3 2 1 5 1 2 3 3 2 2 3 3 1 3 4 4 5 1 3 4	00 00 50 25 00 25 50 00 00 00 50 50 00 00 00 00 50 00 00
Ruer's Elements of Metallography. (Mathewson). (In Press.) Sabin's Industrial and Artistic Technology of Paint and Varnish	3 2 1 5 1 2 3 3 2 2 3 3 1 3 4 4 5 1 3 4	00 00 50 25 00 25 50 00 00 00 50 50 00 00 00 00 50 00 00
Ruer's Elements of Metallography. (Mathewson). (In Press.) Sabin's Industrial and Artistic Technology of Paint and Varnish	3 2 1 5 1 2 3 3 2 2 3 3 1 3 4 4 5 1 3 4	00 00 50 25 00 25 50 00 00 00 50 50 00 00 00 00 50 00 00
Ruer's Elements of Metallography. (Mathewson). (In Press.) Sabin's Industrial and Artistic Technology of Paint and Varnish	3 2 1 5 1 2 3 3 2 2 3 3 1 3 4 4 5 1 3 4	00 00 50 25 00 25 50 00 00 00 50 50 00 00 00 00 50 00 00
Ruer's Elements of Metallography. (Mathewson). (In Press.) Sabin's Industrial and Artistic Technology of Paint and Varnish	3 2 1 5 1 2 3 3 2 2 3 3 1 3 4 4 5 1 3 4	00 00 50 25 00 25 50 00 00 00 50 50 00 00 00 00 50 00 00
Ruer's Elements of Metallography. (Mathewson). (In Press.) Sabin's Industrial and Artistic Technology of Paint and Varnish	3 2 1 5 1 2 3 3 2 2 3 3 1 3 4 4 5 1 3 4	00 00 50 25 00 25 50 00 00 00 50 50 00 00 00 00 50 00 00
Ruer's Elements of Metallography. (Mathewson). (In Press.) Sabin's Industrial and Artistic Technology of Paint and Varnish	3 2 1 5 1 2 3 3 2 2 3 3 1 3 4 4 5 1 3 4	00 00 50 25 00 25 50 00 00 00 50 50 00 00 00 00 50 00 00

Washington's Manual of the Chemical Analysis of Rocks8vo.	\$2	. (00
* Weaver's Military Explosives8vo.	3		ĎÕ
Wells's Laboratory Guide in Qualitative Chemical Analysis8vo.	-	ì	
Short Course in Inorganic Qualitative Chemical Analysis for Engineering	•		~
Students12mo,	1	ŧ	50
Text-book of Chemical Arithmetic	1	2	25
Whipple's Microscopy of Drinking-water8vo.	3		śń
Wilson's Chlorination Process	-	ā	
Cyanide Processes	_	5	
Winton's Microscopy of Vegetables Food		5	
Zsigmondy's Colloids and the Ultramicroscope. (Alexander), Large 12mo,	-	ŏ	-

CIVIL ENGINEERING.

BRIDGES AND ROOFS. HYDRAULICS. MATERIALS OF ENGINEER-ING. RAILWAY ENGINEERING.

Baker's Engineers' Surveying Instruments	3 00
Bixby's Graphical Computing Table Paper 191 × 241 inches.	25
Breed and Hosmer's Principles and Practice of Surveying. Vol. I. Elemen-	
tary Surveying8vo,	3 00
Vol. II. Higher Surveying8vo.	2 50
* Burr's Ancient and Modern Engineering and the Isthmian Canal8vo.	3 50
Comstock's Field Astronomy for Engineers8vo,	2 50
* Corthell's Allowable Pressure on Deep Foundations	1 25
Crandall's Text-book on Geodesy and Least Squares8vo.	3 00
Davis's Elevation and Stadia Tables8vo,	1 00
Elliott's Engineering for Land Drainage	1 50
Practical Farm Drainage. (Second Edition Rewritten.)12mo,	1 50
* Fiebeger's Treatise on Civil Engineering8vo,	5 00
Flemer's Photographic Methods and Instruments8vo,	5 00
Folwell's Sewerage. (Designing and Maintenance.)8vo,	3 00
Freitag's Architectural Engineering8vo.	3 50
Goodhue's Municipal Improvements12mo,	1 50
* Hauch and Rice's Tables of Quantities for Preliminary Estimates12mo,	1 25
Hayford's Text-book of Geodetic Astronomy8vo,	3 00
Hering's Ready Reference Tables (Conversion Factors)16mo, mor.	2 50
Hosmer's Azimuth16mo, mor.	1 00
Howe' Retaining Walls for Earth12mo,	1 25
* Ives's Adjustments of the Engineer's Transit and Level 16mo, bds.	25
Johnson's (J. B.) Theory and Practice of Surveying Large 12mo,	4 00
Johnson's (L. J.) Statics by Algebraic and Graphic Methods8vo.	2 00
Kinnicutt, Winslow and Pratt's Purification of Sewage. (In Preparation).	
* Mahan's Descriptive Geometry8vo,	1 50
Merriman's Elements of Precise Surveying and Geodesy8vo,	2 50
Merriman and Brooks's Handbook for Surveyors16md, mor.	2 00
Nugent's Plane Surveying8vo,	3 50
Ogden's Sewer Construction8vo,	3 00
Sewer Design	2 00
Parsons's Disposal of Municipal Refuse8vo,	2 00
Patton's Treatise on Civil Engineering8vo, half leather,	7 50
Reed's Topographical Drawing and Sketching4to,	5 00
Rideal's Sewage and the Bacterial Purification of Sewage	4 00
Riemer's Shaft-sinking under Difficult Conditions. (Corning and Peele.).8vo,	3 00
Siebert and Biggin's Modern Stone-cutting and Masonry8vo,	1 50
Smith's Manual of Topographical Drawing. (McMillan,)8vo,	2 50
Soper's Air and Ventilation of Subways12mo,	2 50
* Tracy's Exercises in Surveying12mo, mor.	1 00
Tracy's Plane Surveying	3 00
* Trautwine's Civil Engineer's Pocket-book	5 00
Venable's Garbage Crematories in America8vo,	2 00
Methods and Devices for Bacterial Treatment of Sewage8vo,	3 90

Wait's Engineering and Architectural Jurisprudence8vo, Sheep.		00 50
Law of Contracts8vo,	3	00
Law of Operations Preliminary to Construction in Engineering and	9	00
		00
Architecture		00
Sheep,		50
Warren's Stereotomy-Problems in Stone-cutting8vo,	2	50
* Waterbury's Vest-Pocket Hand-book of Mathematics for Engineers.		
2½×5‡ inches, mor.	1	00
Webb's Problem's in the Use and Adjustment of Engineering Instruments.		
16mo, mor.	1	25
Wilson's Topographic Surveying8vo,	3	50
BRIDGES AND ROOPS.		
DRIDGES AND ROOFS.		
Boller's Practical Treatise on the Construction of Iron Highway Bridges8vo.	2	00
* Thames River BridgeOblong paper,		00
Burr and Falk's Design and Construction of Metallic Bridges8vo,		00
Influence Lines for Bridge and Roof Computations8vo,		00
Du Bois's Mechanics of Engineering. Vol. II	10	
Poster's Treeties on Wooden Treetie Priders	ıυ	
Foster's Treatise on Wooden Trestle Bridges4to,	9	00
Fowler's Ordinary Foundations8vo,	3	50
Greene's Arches in Wood, Iron, and Stone8vo,	2	50
Bridge Trusses8vo,	2	50
Roof Trusses8vo,	1	25
Grimm's Secondary Stresses in Bridge Trusses8vo,		5 0
Heller's Stresses in Structures and the Accompanying Deformations8vo,		00
Howe's Design of Simple Roof-trusses in Wood and Steel8vo.		00
Symmetrical Masonry Arches8vo,	2	50
Treatise on Arches8vo,		00
Johnson, Bryan and Turneaure's Theory and Practice in the Designing of		
Modern Framed StructuresSmall 4to,	10	00
Merriman and Jacoby's Text-book on Roofs and Bridges:	10	•••
Part I. Stresses in Simple Trusses8vo,	9	50
Part II. Graphic Statics	~	50
Part III. Bridge Design	5	50 50
Part IV. Higher Structures8vo,	- 2	50 50
Morison's Memphis BridgeOblong 4to,		00
Sondericker's Graphic Statics, with Applications to Trusses, Beams, and		
Arches8vo,		00
Waddell's De Pontibus, Pocket-book for Bridge Engineers 16mo, mor.	2	00
* Specifications for Steel Bridges		50
Waddell and Harringtoon's Bridge Engineering. (In Preparation.)		
Wright's Designing of Draw-spans. Two parts in one volume8vo,	3	50

HYDRAULICS.		
The 10 Tag 75 and an	3	00
Barnes's ICE Formation		
Barnes's Ice Formation		
Bazin's Experiments upon the Contraction of the Liquid Vein Issuing from	9	ΛΛ
Bazin's Experiments upon the Contraction of the Liquid Vein Issuing from an Orifice. (Trautwine.)8vo,	2	00
Bazin's Experiments upon the Contraction of the Liquid Vein Issuing from an Orifice. (Trautwine.)	2	00 00
Bazin's Experiments upon the Contraction of the Liquid Vein Issuing from an Orifice. (Trautwine.)	. 2	00
Bazin's Experiments upon the Contraction of the Liquid Vein Issuing from an Orifice. (Trautwine.)	. 2	00 50
Bazin's Experiments upon the Contraction of the Liquid Vein Issuing from an Orifice. (Trautwine.)	5 1 2	50 00
Bazin's Experiments upon the Contraction of the Liquid Vein Issuing from an Orifice. (Trautwine.)	2 5 1 2 2	50 00 50 50
Bazin's Experiments upon the Contraction of the Liquid Vein Issuing from an Orifice. (Trautwine.)	2 5 1 2 2 3	50 00 50 00 50 00
Bazin's Experiments upon the Contraction of the Liquid Vein Issuing from an Orifice. (Trautwine.)	2 5 1 2 2 3 4	50 00 50 00 50 00 00
Bazin's Experiments upon the Contraction of the Liquid Vein Issuing from an Orifice. (Trautwine.)	2 5 1 2 2 3 4 5	50 00 50 00 50 00
Bazin's Experiments upon the Contraction of the Liquid Vein Issuing from an Orifice. (Trautwine.)	2 5 1 2 2 3 4 5	50 00 50 00 50 00 00
Bazin's Experiments upon the Contraction of the Liquid Vein Issuing from an Orifice. (Trautwine.)	2 5 1 2 2 3 4 5	50 00 50 00 50 00 00
Bazin's Experiments upon the Contraction of the Liquid Vein Issuing from an Orifice. (Trautwine.)	2 5 1 2 2 3 4 5 1 2	50 00 50 50 00 00 00 00 50
Bazin's Experiments upon the Contraction of the Liquid Vein Issuing from an Orifice. (Trautwine.)	2 5 1 2 2 3 4 5 1 2	50 00 00 50 00 00 00 00 00 50 50
Bazin's Experiments upon the Contraction of the Liquid Vein Issuing from an Orifice. (Trautwine.)	2 5 1 2 2 3 4 5 1 2	50 00 50 50 00 00 00 00 50
Bazin's Experiments upon the Contraction of the Liquid Vein Issuing from an Orifice. (Trautwine.)	2 5 1 2 2 3 4 5 1 2	50 00 00 50 00 00 00 00 00 50 50
Bazin's Experiments upon the Contraction of the Liquid Vein Issuing from an Orifice. (Trautwine.)	2 5 1 2 2 3 4 5 1 2	50 00 00 50 00 00 00 00 00 50 50

Hazen's Clean Water and How to Get ItLarge 12mo,		
Filtration of Public Water-supplies8vo, Hazelhurst's Towers and Tanks for Water-works8vo,		00 50
Herschel's 115 Experiments on the Carrying Capacity of Large, Riveted, Metal		
Conduits8vo,		0 0
Hoyt and Grover's River Discharge8vo,	2	00
Hubbard and Kiersted's Water-works Management and Maintenance.		
8vo,	4	00
Lyndon's Development and Electrical Distribution of Water Power. 8vo.	2	00
Mason's Water-supply. (Considered Principally from a Sanitary Stand-	0	00
point.)8vo,	4	00
Merriman's Treatise on Hydraulics8vo,		00
* Molitor's Hydraulics of Rivers, Weirs and Sluices	2	00
* Richards's Laboratory Notes on Industrial Water Analysis		50
supply. Second Edition, Revised and EnlargedLarge 8vo,	R	00
* Thomas and Watt's Improvement of Rivers		00
Turneaure and Russell's Public Water-supplies8vo,	5	00
Wegmann's Design and Construction of Dams. 5th Ed., enlarged4to,		00
Water-Supply of the City of New York from 1658 to 18954to,		
Whipple's Value of Pure WaterLarge 12mo, Williams and Hazen's Hydraulic Tables8vo,		00 50
Wilson's Irrigation Engineering		00
Wood's Turbines8vo,		50
MATERIALS OF ENGINEERING.		
	_	
Baker's Roads and Pavements		00
Black's United States Public Works		00
Blanchard's Bituminous Roads. (In Press.)	Ū	•
Bleininger's Manufacture of Hydraulic Cement. (In Preparation.)		
* Bovey's Strength of Materials and Theory of Structures		50
Burr's Elasticity and Resistance of the Materials of Engineering		50 00
Inspection of the Materials and Workmanship Employed in Construction.	Ð	w
16ma	3	00
Church's Mechanics of Engineering8vo,		00
Du Bois's Mechanics of Engineering.		
Vol. I. Kinematics, Statics, Kinetics	7	50
Theory of Flexures	10	Δ0
* Eckel's Cements, Limes, and Plasters		90
Stone and Clay Products used in Engineering. (In Preparation.) Fowler's Ordinary Foundations	٠	•••
Fowler's Ordinary Foundations8vo,	3	50
* Greene's Structural Mechanics		50
* Holley's Lead and Zinc PigmentsLarge 12mo, Holley and Ladd's Analysis of Mixed Paints, Color Pigments and Varnishes.	3	00
Large 12mo,	2	50
Johnson s (C. M.) Rapid Methods for the Chemical Analysis of Special Steels,	-	•
Steel-making Alloys and GraphiteLarge 12mo,	3	00
Johnson's (J. B.) Materials of ConstructionLarge 8vo,		00
Keep's Cast Iron		50
Maire's Modern Pigments and their Vehicles		50 00
	•,	
Martens's Handbook on Testing Materials. (Henning.) 2 vols8vo.		
Martens's Handbook on Testing Materials. (Henning.) 2 vols8vo, Maurer's Technical Mechanics8vo,	7	50 00
Martens's Handbook on Testing Materials. (Henning.) 2 vols	7 4 5	50 00 00
Martens's Handbook on Testing Materials. (Henning.) 2 vols	7 4 5 5	50 00 00 00
Martens's Handbook on Testing Materials. (Henning.) 2 vols	7 4 5 5	50 00 00 00 00
Martens's Handbook on Testing Materials. (Henning.) 2 vols. 8vo, Maurer's Technical Mechanics. 8vo, Merrill's Stones for Building and Decoration. 8vo, Merriman's Mechanics of Materials. 8vo, * Strength of Materials. 12mo, Metcalf's Steel. A Manual for Steel-users. 12mo, Morrison's Highway Engineering. 8vo.	7 4 5 5 1 2	50 00 00 00 00 00
Martens's Handbook on Testing Materials. (Henning.) 2 vols. 8vo, Maurer's Technical Mechanics. 8vo, Merrill's Stones for Building and Decoration. 8vo, Merriman's Mechanics of Materials. 8vo, * Strength of Materials. 12mo, Metcalf's Steel. A Manual for Steel-users. 12mo, Morrison's Highway Engineering. 8vo, Patton's Practical Treatise on Foundations. 8vo,	7 4 5 5 1 2 2	50 00 00 00 00
Martens's Handbook on Testing Materials. (Henning.) 2 vols. 8vo, Maurer's Technical Mechanics. 8vo, Merrill's Stones for Building and Decoration. 8vo, Merriman's Mechanics of Materials. 8vo, * Strength of Materials. 12mo, Metcalf's Steel. A Manual for Steel-users. 12mo, Morrison's Highway Engineering. 8vo.	7 4 5 5 1 2 2 5	50 00 00 00 00 00 50

Richardson's Modern Asphalt Pavements8vo,		
Richey's Building Foreman's Pocket Book and Ready Reference 16mo, mor.	5	00
*Cement Workers' and Plasterers' Edition (Building Mechanics' Ready Reference Series)	1	50
Handbook for Superintendents of Construction16mo, mor.		00
*Stone and Brick Masons' Edition (Building Mechanics' Ready	-	00
Reference Series)	1	50
* Ries's Clays: Their Occurrence, Properties, and Uses		00
* Ries and Leighton's History of the Clay-working Industry of the United		
States8vo.		50
Sabin's Industrial and Artistic Technology of Paint and Varnish8vo,	3	00
Smith's Strength of Material	•	-0
Spalding's Hydraulic Cement		50 00
Text-book on Roads and Pavements		00
Taylor and Thompson's Treatise on Concrete, Plain and Reinforced8vo,		00
Thurston's Materials of Engineering. In Three Parts8vo,		00
Part I. Non-metallic Materials of Engineering and Metallurgy8vo,		00
Part II. Iron and Steel	3	50
Part III. A Treatise on Brasses, Bronzes, and Other Alloys and their	_	
Constituents		50
Turneaure and Maurer's Principles of Reinforced Concrete Construction.	4	00
Second Edition, Revised and Enlarged	3	50
Waterbury's Cement Laboratory Manual		00
Wood's (De V.) Treatise on the Resistance of Materials, and an Appendix on	_	
the Preservation of Timber8vo,	2	00
Wood's (M. P.) Rustless Coatings: Corrosion and Electrolysis of Iron and	-	
Steel8vo,	4	00
RAILWAY ENGINEERING.		
Andrews's Handbook for Street Railway Engineers3×5 inches, mor.	1	25
Berg's Buildings and Structures of American Railroads4to.		00
Brooks's Handbook of Street Railroad Location		50
		50
Butts's Civil Engineer's Field-book		50
Transition Curve		50
* Crockett's Methods for Earthwork Computations8vo,		
	-	50
Dredge's History of the Pennsylvania Railroad. (1879)		00
Fisher's Table of Cubic Yards	3	00 25
Fisher's Table of Cubic Yards	3	00
Fisher's Table of Cubic Yards	2	00 25
Fisher's Table of Cubic Yards	2	00 25 50
Fisher's Table of Cubic Yards	3 2 1	00 25 50 00 50
Fisher's Table of Cubic Yards	3 2 1 1 1	00 25 50 00 50 00
Fisher's Table of Cubic Yards	3 2 1 1 1 3	00 25 50 00 50 00 00
Fisher's Table of Cubic Yards	3 2 1 1 1 3 3	00 25 50 00 50 00 00 00
Fisher's Table of Cubic Yards	3 2 1 1 1 3 3	00 25 50 00 50 00 00
Fisher's Table of Cubic Yards	3 2 1 1 1 3 3	00 25 50 00 50 00 00 00
Fisher's Table of Cubic Yards	3 1 1 3 3 3	00 25 50 00 50 00 00 00
Fisher's Table of Cubic Yards	3 2 1 1 1 1 3 3 3 3	50 00 25 50 00 50 00 00 00 00
Fisher's Table of Cubic Yards	3 2 1 1 1 3 3 3 3 3	50 00 25 50 00 50 00 00 00 00 00
Fisher's Table of Cubic Yards	3 2 1 1 1 3 3 3 3 3	50 25 50 00 50 00 00 00 00 00 50
Fisher's Table of Cubic Yards	3 2 1 1 1 3 3 3 3 3	50 00 25 50 00 50 00 00 00 00 00
Fisher's Table of Cubic Yards	2 1 1 1 3 3 3 3 3 1 1	50 00 25 50 00 50 00 00 00 00 50 50 50 50
Fisher's Table of Cubic Yards	2 1 1 1 3 3 3 3 3 1 1	50 25 50 00 50 00 00 00 00 00 50
Fisher's Table of Cubic Yards	3 2 1 1 1 1 3 3 3 3 3 1 1 1 2	50 00 25 50 00 50 00 00 00 00 50 50 50 50
Fisher's Table of Cubic Yards	3 2 1 1 1 1 3 3 3 3 3 1 1 1 2 2 2	50 25 50 00 50 00 00 00 00 50 50 50 50 50
Fisher's Table of Cubic Yards	3 2 1 1 1 1 3 3 3 3 3 1 1 2 2 2 5 5	50 00 50 00 00 00 00 00 50 50 50 50 50
Fisher's Table of Cubic Yards	3 1 1 1 1 3 3 3 3 3 1 1 2 2 2 5 5 5 5	00 25 50 00 50 00 00 00 00 00 50 50 00 00 00
Fisher's Table of Cubic Yards	3 1 1 1 1 3 3 3 3 3 1 1 2 2 2 5 5 5 5	50 00 50 00 00 00 00 00 50 50 50 50 50

DRAWING.

Dair's Amematics of Machinery	\$2	
* Bartlett's Mechanical Drawing		00
Abriagea Ed		50
Coolidge's Manual of Drawing8vo, paper,	1	00
Coolidge and Freeman's Elements of General Drafting for Mechanical Engi-		
neersOblong 4to,		50
Durley's Kinematics of Machines8vo,	4	
Emch's Introduction to Projective Geometry and its Application8vo,	2	50
French and Ives' Stereotomy8vo,	2	50
Hill's Text-book on Shades and Shadows, and Perspective	2	00
Jamison's Advanced Mechanical Drawing8vo,	2	00
Elements of Mechanical Drawing8vo,	2	50
Jones's Machine Design:		
Part I. Kinematics of Machinery8vo,	1	50
Part II. Form, Strength, and Proportions of Parts8vo,	3	00
Kimball and Barr's Machine Design. (In Press.)		
MacCord's Elements of Descritpive Geometry8vo,	3	00
Kinematics; or, Practical Mechanism8vo,	5	00
Mechanical Drawing4to,	4	00
Velocity Diagrams8vo,	1	50
McLeod's Descriptive GeometryLarge 12mo,	1	5 0
* Mahan's Descriptive Geometry and Stone-cutting	1	5 0
Industrial Drawing. (Thompson.)8vo,	3	50
Moyer's Descriptive Geometry8vo,	2	00
Reed's Topographical Drawing and Sketching4to,	5	00
Reid's Course in Mechanical Drawing	2	00
Text-book of Mechanical Drawing and Elementary Machine Design8vo,	3	00
Robinson's Principles of Mechanism8vo,	3	00
Schwamb and Merrill's Elements of Mechanism8vo,	3	00
Smith (A. W.) and Marx's Machine Design	3	00
Smith's (R. S.) Manual of Topographical Drawing. (McMillan)8vo,	2	50
* Titsworth's Elements of Mechanical DrawingOblong 8vo,	1	25
Warren's Drafting Instruments and Operations	1	25
Elements of Descriptive Geometry, Shadows, and Perspective8vo,	3	50
Elements of Machine Construction and Drawing8vo,		5 0
Elements of Plane and Solid Free-hand Geometrical Drawing12mo,		00
General Problems of Shades and Shadows8vo,	3	00
Manual of Elementary Problems in the Linear Perspective of Forms and		
Shadow12mo,	1	00
Manual of Elementary Projection Drawing		50
Plane Problems in Elementary Geometry		25
Problems, Theorems, and Examples in Descriptive Geometry8vo,	2	5 0
Weisbach's Kinematics and Power of Transmission. (Hermann and		
Klein.)8vo,		00
Wilson's (H. M.) Topographic Surveying8vo,		50
* Wilson's (V. T.) Descriptive Geometry		50
Free-hand Lettering8vo,		00
Free-hand Perspective8vo,		50
Woolf's Elementary Course in Descriptive GeometryLarge 8vo,	3	00
ELECTRICITY AND PHYSICS.		
* Abegg's Theory of Electrolytic Dissociation. (von Ende.)12mo,	1	25
Andrews's Hand-book for Street Railway Engineering3×5 inches, mor.	i	
Anthony and Brackett's Text-book of Physics. (Magie.)Large 12mo,		00
Anthony and Ball's Lecture-notes on the Theory of Electrical Measure-	_ ,	
ments12mo,	1 (00
Benjamin's History of Electricity8vo,	3	
Voltaic Cell8vo,	3 (
10	- '	-
10		

Setts's Lead Refining and Electrolysis8vo,			
Classen's Quantitative Chemical Analysis by Electrolysis. (Boltwood.).8vo.			
Collins's Manual of Wireless Telegraphy and Telephony		00	
Danneel's Electrochemistry. (Merriam.)		25	
Pawson's "Engineering" and Electric Traction Pocket-book16mo, mor.		00	
Polezalek's Theory of the Lead Accumulator (Storage Battery). (von Ende.		•	
12mo.		50	
Ouhem's Thermodynamics and Chemistry. (Burgess.)8vo,	4	00	
lather's Dynamometers, and the Measurement of Power12mo,	3	00	
Setman's Introduction to Physical Science			
Gilbert's De Magnete. (Mottelay)8vo		50	
Hanchett's Alternating Currents		00	
Hering's Ready Reference Tables (Conversion Factors)16mo, mor.		50	
* Hobart and Ellis's High-speed Dynamo Electric Machinery		00 00	
Telescopic Mirror-scale Method, Adjustments, and TestsLarge 8vo.		7 5	
* Karapetoff's Experimental Electrical Engineering8vo		00	
Kinzbrunner's Testing of Continuous-current Machines8vo	2	00	
Landauer's Spectrum Analysis. (Tingle.)8vo.		00	
Le Chatelier's High-temperature Measurements. (Boudouard—Burgess.) 12m	o, 3		
Löb's Electrochemistry of Organic Compounds. (Lorenz)8vo.	3	00	
Lyndon's Development and Electrical Distribution of Water Power8vo,		00	
* Lyons's Treatise on Electromagnetic Phenomena. Vols, I and II. 8vo, each,	6	00	
* Michie's Elements of Wave Motion Relating to Sound and Light8vo,		00	
Morgan's Outline of the Theory of Solution and its Results		00 50	
* Physical Chemistry for Electrical Engineers		50 50	
Norris and Dennison's Course of Problems on the Electrical Characteristics of		J U	
Circuits and Machines. (In Press.)			
* Parshall and Hobart's Electric Machine Design4to, half mor,	12	50	
Reagan's Locomotives: Simple, Compound, and Electric. New Edition.			
Large 12mo,		50	
* Rosenberg's Electrical Engineering. (Haldane Gee—Kinzbrunner.). 8vo,		00	
Ryan, Norris, and Hoxie's Electrical Machinery. Vol. I		50	
Schapper's Laboratory Guide for Students in Physical Chemistry12mo, * Tillman's Elementary Lessons in Heat8vo,		00 50	
Tory and Pitcher's Manual of Laboratory PhysicsLarge 12mo,		00	
Ulke's Modern Electrolytic Copper Refining8vo.			
LAW.			
* December 1 and book of Hadrel Local Information for Durings No.			
* Brennan's Hand-book of Useful Legal Information for Business Men. 16mo, mor.	E	00	
* Davis's Elements of Law8vo,		50	
* Treatise on the Military Law of United States8vo,		00	
* Dudley's Military Law and the Procedure of Courts-martial. Large 12mo,		50	
Manual for Courts-martial16mo, mor.	1	50	
Wait's Engineering and Architectural Jurisprudence8vo,		00	
Sheep,		50	
Law of Contracts8vo,	3	00	
Law of Contracts			
Law of Operations Preliminary to Construction in Engineering and	_	~~	
Law of Operations Preliminary to Construction in Engineering and Architecture8vo,		00	
Law of Operations Preliminary to Construction in Engineering and		00 5 0	
Law of Operations Preliminary to Construction in Engineering and Architecture8vo,			
Law of Operations Preliminary to Construction in Engineering and Architecture			
Law of Operations Preliminary to Construction in Engineering and Architecture8vo,			
Law of Operations Preliminary to Construction in Engineering and Architecture	5	5 0	
Law of Operations Preliminary to Construction in Engineering and Architecture	5	50 50	
Law of Operations Preliminary to Construction in Engineering and Architecture	1 1	50 00	
Law of Operations Preliminary to Construction in Engineering and Architecture	1 1	50 00	
Law of Operations Preliminary to Construction in Engineering and Architecture	1 1	50 00	
Law of Operations Preliminary to Construction in Engineering and Architecture	1 1	50 00	
Law of Operations Preliminary to Construction in Engineering and Architecture	1 1	50 00	
Law of Operations Preliminary to Construction in Engineering and Svo, Svo, Sheep, MATHEMATICS. Baker's Elliptic Functions	1 1	50 00	
Law of Operations Preliminary to Construction in Engineering and Svo, Sheep, MATHEMATICS. Baker's Elliptic Functions	1 1	50 00	

.

Develop to TT and a 1-TD and to	
Byerley's Harmonic Functions	\$1 00 2 00
* Coffin's Vector Analysis	2 00 2 50
Compton's Manual of Logarithmic Computations	1 50
* Dickson's College AlgebraLarge 12mo,	
* Introduction to the Theory of Algebraic EquationsLarge 12mo,	1 25
Emch's Introduction to Projective Geometry and its Application8vo, Fiske's Functions of a Complex Variable8vo,	2 50 1 00
Halsted's Elementary Synthetic Geometry	1 50
Elements of Geometry	1 75
* Rational Geometry12mo,	1 50
Synthetic Projective Geometry	1 00
Hyde's Grassmann's Space Analysis	1 00 15
*100 copies,	5 00
* Mounted on heavy cardboard, 8×10 inches,	25
*10 copies,	2 00
Johnson's (W. W.) Abridged Editions of Differential and Integral Calculus.	
Large 12mo, 1 vol.	2 50
Curve Tracing in Cartesian Co-ordinates	1 00 1 00
Elementary Treatise on Differential Calculus Large 12mo,	1 50
Elementary Treatise on the Integral CalculusLarge 12mo,	1 50
* Theoretical Mechanics	3 00
Theory of Errors and the Method of Least Squares	1 50
Treatise on Differential Calculus	3 00
Treatise on Ordinary and Partial Differential EquationsLarge 12mo,	3 00 3 50
Karapetoff's Engineering Applications of Higher Mathematics.	3 50
(In Preparation.)	
Laplace's Philosophical Essay on Probabilities. (Truscott and Emory.) 12mo, *Ludlow and Bass's Elements of Trigonometry and Logarithmic and Other	2 00
Tables	3 00
* Trigonometry and Tables published separately Each, * Ludlow's Logarithmic and Trigonometric Tables 8vo,	2 00
Macfarlane's Vector Analysis and Quaternions	1 00 1 00
McMahon's Hyperbolic Functions	1 00
Manning's Irrational Numbers and their Representation by Sequences and	1 25
Mathematical Monographs. Edited by Mansfield Merriman and Robert S. WoodwardOctavo, each	1 00
No. 1. History of Modern Mathematics, by David Eugene Smith.	1 00
No. 2. Synthetic Projective Geometry, by George Bruce Halsted.	
No. 3. Determinants, by Laenas Gifford Weld. No. 4. Hyper-	
bolic Functions, by James McMahon. No. 5. Harmonic Functions, by William E. Byerly. No. 6. Grassmann's Space Analysis, by Edward W. Hyde. No. 7. Probability and Theory of Errors,	
by Edward W. Hyde. No. 7. Probability and Theory of Errors.	
by Robert S. Woodward. No. 8. Vector Analysis and Quaternions,	
by Alexander Macfarlane No. 9 Differential Equations by	
William Woolsey Johnson. No. 10. The Solution of Equations, by Mansfield Merriman. No. 11. Functions of a Complex Variable,	
by Mansheld Merriman. No. 11. Functions of a Complex Variable, by Thomas S. Fiske.	
Maurer's Technical Mechanics	4 00
Merriman's Method of Least Squares	2 00
Solution of Equations	1 00
Rice and Johnson's Differential and Integral Calculus. 2 vols. in one.	
Large 12mo, Elementary Treatise on the Differential Calculus Large 12mo,	1 50
Smith's History of Modern Mathematics	3 00 1 00
* Veblen and Lennes's Introduction to the Real Infinitesimal Analysis of One	. 00
Variable8vo,	2 00
* Waterbury's Vest Pocket Hand-book of Mathematics for Engineers.	
2½×5½ inches, mor.	1 00
Weld's Determinants	1 00 2 00
Woodward's Probability and Theory of Errors	1 00

MECHANICAL ENGINEERING.

MATERIALS OF ENGINEERING, STEAM-ENGINES AND BOILERS.

Bacon's Forge Practice	\$1	50
Baldwin's Steam Heating for Buildings	2	50
Barr's Kinematics of Machinery8vo,	2	50
* Bartlett's Mechanical Drawing	3	00
* " " Abridged Ed	1	
* Burr's Ancient and Modern Engineering and the Isthmian Canal 8vo,	3	50
Carpenter's Experimental Engineering	6	00
Heating and Ventilating Buildings8vo,	4	00
Clerk's Gas and Oil Engine. (New edition in press.) Compton's First Lessons in Metal Working12mo,		
Compton's First Lessons in Metal Working	1	50
Compton and De Groodt's Speed Lathe	1	50
Coolidge's Manual of Drawing8vo, paper,	1	00
Coolidge and Freeman's Elements of Geenral Drafting for Mechanical En-	_	
gineersOblong 4to,	2	50
Cromwell's Treatise on Belts and Pulleys		50
	1	50
Dingey's Machinery Pattern Making		00
Flanders's Gear-cutting Machinery. Large 12mo,		00
Flather's Dynamometers and the Measurement of Power		00
		00
Rope Driving	2 1	
Goss's Locomotive Sparks	2	00
Greene's Pumping Machinery. (In Preparation.)	2	w
Hering's Ready Reference Tables (Conversion Factors)16mo, mor.	2	50
* Hobart and Ellis's High Speed Dynamo Electric Machinery 8vo,		00
Hutton's Gas Engine		00
Jamison's Advanced Mechanical Drawing		00
Elements of Mechanical Drawing		50
Jones's Gas Engine		00
Machine Design:	-	00
Part I. Kinematics of Machinery8vo,	1	50
Part II. Form, Strength, and Proportions of Parts 8vo,		00
Kent's Mechanical Engineer's Pocket-Book		00
Kerr's Power and Power Transmission	-	00
Kimball and Barr's Machine Design. (In Press.)	_	••
Levin's Gas Engine. (In Press.)8vo.		
Leonard's Machine Shop Tools and Methods	4	00
* Lorenz's Modern Refrigerating Machinery. (Pope, Haven, and Dean) 8vo,	4	00
MacCord's Kinematics; or, Practical Mechanism8vo,	5	00
Mechanical Drawing4to,	4	00
Velocity Diagrams	1	50
MacFarland's Standard Reduction Factors for Gases 8vo,	1	50
Mahan's Industrial Drawing. (Thompson.)8vo,	3	50
Mehrtens's Gas Engine Theory and DesignLarge 12mo,	2	50
Oberg's Handbook of Small Tools Large 12mo,		00
* Parshall and Hobart's Electric Machine Design. Small 4to, half leather,	12	50
Peele's Compressed Air Plant for Mines		00
Poole's Calorific Power of Fuels		00
* Porter's Engineering Reminiscences, 1855 to 18828vo,		00
Reid's Course in Mechanical Drawing		00
Text-book of Mechanical Drawing and Elementary Machine Design.8vo,		00
Richards's Compressed Air	1	50
Robinson's Principles of Mechanism	-	00
Schwamb and Merrill's Elements of Mechanism8vo,	_	00
Smith (A. W.) and Marx's Machine Design		00
Smith's (O.) Press-working of Metals	3	00
Sorel's Carbureting and Combustion in Alcohol Engines. (Woodward and		^^
Preston.)		00
DIVILE 3 FIRCHICAL LESIMING OF CAS AND CHAS MICIEIS	3	50

Thurston's Animal as a Machine and Prime Motor, and the Laws of Energetics.		
12mo, Treatise on Friction and Lost Work in Machinery and Mill Work8vo,		00
* Tillson's Complete Automobile Instructor		50
* Titsworth's Elements of Mechanical DrawingOblong 8vo,		25
Warren's Elements of Machine Construction and Drawing 8vo,	7	
* Waterbury's Vest Pocket Hand-book of Mathematics for Engineers.		
2½×5½ inches, mor.	1	00
Weisbach's Kinematics and the Power of Transmission. (Herrmann—Klein.)	5	00
Machinery of Transmission and Governors. (Hermann—Klein.)8vo.		00
Machinery of Transmission and Governors. (Hermann—Klein.)8vo, Wood's Turbines8vo,		50
MATERIALS OF ENGINEERING.		
* Denote Character of Materials and Therman of Characters	~	
* Bovey's Strength of Materials and Theory of Structures	7 7	50 50
Church's Mechanics of Engineering		00
* Greene's Structural Mechanics8vo,	2	50
* Holley's Lead and Zinc PigmentsLarge 12mo	3	00
Holley and Ladd's Analysis of Mixed Paints, Color Pigments, and Varnishes.	_	
Johnson's (C. M.) Rapid Methods for the Chemical Analysis of Special	2	5 0
Steels, Steel-Making Alloys and Graphite Large 12mo,	3	00
Johnson's (I. B.) Materials of Construction		00
Keep's Cast Iron		50
Lanza's Applied Mechanics		50
Maire's Modern Pigments and their Vehicles		00 50
Martens's Handbook on Testing Materials. (Henning.)8vo, Maurer's Techincal Mechanics8vo,		00
Merriman s Mechanics of Materials8vo,		00
* Strength of Materials		00
Metcalf's Steel. A Manual for Steel-users		00
Sabin's Industrial and Artistic Technology of Paint and Varnish 8vo,		00
Smith's ((A. W.) Materials of Machines	1	00
Thurston's Materials of Engineering	8	00
Part I. Non-metallic Materials of Engineering,		00
Part II. Iron and Steel8vo,	3	50
Part III. A Treatise on Brasses, Bronzes, and Other Alloys and their	_	
Constituents	_	50 00
Treatise on the Resistance of Materials and an Appendix on the	0	w
Preservation of Timber8vo,	2	00
Wood's (M. P.) Rustless Coatings: Corrosion and Electrolysis of Iron and		
Steel8vo,	4	00
STEAM-ENGINES AND BOILERS.		
Berry's Temperature-entropy Diagram		00
Carnot's Reflections on the Motive Power of Heat. (Thurston.)12mo,		50
Chase's Art of Pattern Making		50 00
Dawson's "Engineering" and Electric Traction Pocket-book 16mo, mor.		8
Ford's Boiler Making for Boiler Makers18mo,		00
* Gebhardt's Steam Power Plant Engineering8vo,	6	00
Goss's Locomotive Performance8vo,		00
Hemenway's Indicator Practice and Steam-engine Economy12mo, Hutton's Heat and Heat-engines8vo,		00
Mechanical Engineering of Power Plants	_	00
Kent's Steam boiler Economy8vo,		00
14		

Kneass's Practice and Theory of the Injector. 8vo, MacCord's Slide-valves. 8vo, Meyer's Modern Locomotive Construction. 4to, Moyer's Steam Turbines. 8vo,	10 4	0
Peabody's Manual of the Steam-engine Indicator	1	00
Valve-gears for Steam-engines	4	50 00 24
Reagan's Locomotives: Simple, Compound, and Electric. New Edition.		
Large 12mo, Sinclair's Locomotive Engine Running and Management12mo,		50 00
Smart's Handbook of Engineering Laboratory Practice		50
Snow's Steam-boiler Practice		00
Valve-gears8vo,		50
Spangler, Greene, and Marshall's Elements of Steam-engineering 8vo,		00
Thomas's Steam-turbines	4	00
cator and the Prony Brake	5	00
Handy Tables8vo,		50
Manual of Steam-boilers, their Designs, Construction, and Operation 8vo,		00
Manual of the Steam-engine	10	00
Part II. Design, Construction, and Operation		00
Steam-boiler Explosions in Theory and in Practice		50
Weisbach's Heat, Steam, and Steam-engines. (Du Bois.)8vo,		00
Whitham's Steam-engine Design	5	00
MECHANICS PURE AND APPLIED.		
Church's Mechanics of Engineering8vo,	6	00
Notes and Examples in Mechanics		00
Dana's Text-book of Elementary Mechanics for Colleges and Schools .12mo, Du Bois's Elementary Principles of Mechanics:	1	5 0
Vol. I. Kinematics	3	50
Vol II Statics 8vo	4	00
Mechanics of Engineering. Vol. I		50
* Greene's Structural Mechanics8vo,	10 2	50
James's Kinematics of a Point and the Rational Mechanics of a Particle. Large 12mo,		00
* Johnson's (W. W.) Theoretical Mechanics		00
Lanza's Applied Mechanics		50
* Martin's Text Book on Mechanics, Vol. I, Statics		25
* Vol. II, Kinematics and Kinetics.12mo, Maurer's Technical Mechanics		50
* Merriman's Elements of Mechanics		00
Mechanics of Materials8vo.		00
* Michie's Elements of Analytical Mechanics	4	00
Robinson's Principles of Mechanism		00
Sanborn's Mechanics ProblemsLarge 12mo, Schwamb and Merrill's Elements of Mechanism8vo,		50 00
Wood's Elements of Analytical Mechanics 8vo,		00
Principles of Elementary Mechanics		25

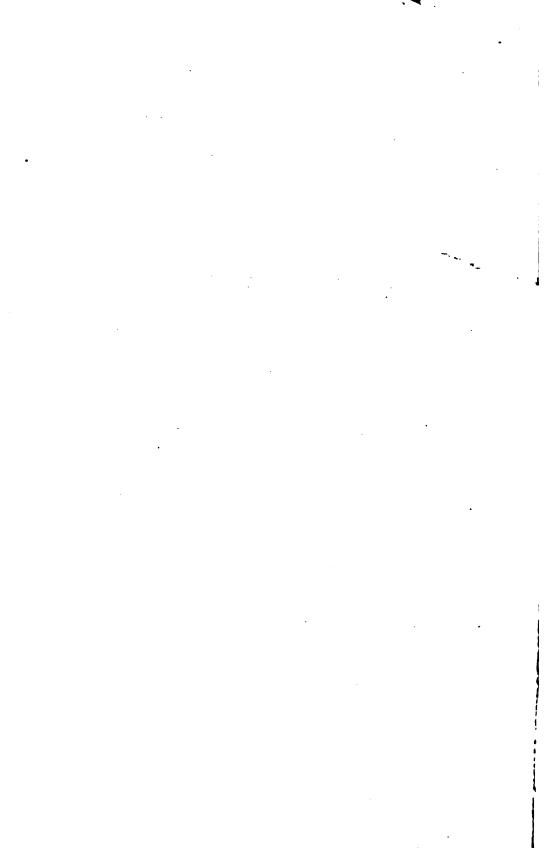
MEDICAL.

* Abderhalden's Physiological Chemistry in Thirty Lectures. (Hall and		
Defren.)8vo,	\$5 0	ю
Defren.)	1 0	Ю
Bolduan's Immune Sera	1 5	
Bordet's Studies in Immunity. (Gay). (In Press.)8vo,		
Davenport's Statistical Methods with Special Reference to Biological Varia-		
tions	1 5	50
Ehrlich's Collected Studies on Immunity. (Bolduan.)8vo, * Fischer's Physiology of AlimentationLarge 12mo,	6 0	Ю
* Fischer's Physiology of AlimentationLarge 12mo,	20	ю
de Fursac's Manual of Psychiatry. (Rosanoff and Collins.)Large 12mo,	2 5	Ю
Hammarsten's Text-book on Physiological Chemistry. (Mandel.)8vo,	4 0	Ю
Jackson's Directions for Laboratory Work in Physiological Chemistry8vo,	1 2	25
Lassar-Cohn's Practical Urinary Analysis. (Lorenz.)	10	Ю
Mandel's Hand-book for the Bio-Chemical Laboratory12mo,	15	Ю
* Pauli's Physical Chemistry in the Service of Medicine. (Fischer.)12mo,	1 2	:5
* Pozzi-Escot's Toxins and Venoms and their Antibodies. (Cohn.). 12mo,	10	Ю
Rostoski's Serum Diagnosis. (Bolduan.)12mo,	10	
Ruddiman's Incompatibilities in Prescriptions8vo,	20	
Whys in Pharmacy12mo,	10	
Salkowski's Physiological and Pathological Chemistry. (Orndorff.)8vo,	2 5	
* Satterlee's Outlines of Human Embryology	1 2	
Smith's Lecture Notes on Chemistry for Dental Students8vo,	2 5	
* Whipple's Tyhpoid FeverLarge 12mo,	30	
Woodhull's Notes on Military Hygiene16mo,	1 5	
* Personal Hygiene	10	Ю
Worcester and Atkinson's Small Hospitals Establishment and Maintenance,		
and Suggestions for Hospital Architecture, with Plans for a Small		
Hospital12mo,	1 2	35
METALLURGY.		
METALLURGY.		
	4 0	ю
METALLURGY. Betts's Lead Refining by Electrolysis	4 0	ю
Betts's Lead Refining by Electrolysis	4 0	
Betts's Lead Refining by Electrolysis		00
Betts's Lead Refining by Electrolysis	3 0)O 50
Betts's Lead Refining by Electrolysis	3 0 2 5 2 5 1 0	00 50 50
Betts's Lead Refining by Electrolysis	3 0 2 5 2 5 1 0 3 0	00 50 50 50 00
Betts's Lead Refining by Electrolysis	3 0 2 5 2 5 1 0	00 50 50 50 00
Betts's Lead Refining by Electrolysis	3 0 2 5 2 5 1 0 3 0	00 50 50 50 00
Betts's Lead Refining by Electrolysis	3 0 2 5 2 5 1 0 3 0 2 5	00 50 50 50 00 00 50
Betts's Lead Refining by Electrolysis	3 0 2 5 2 5 1 0 3 0 2 5	50 50 50 50 50 50
Betts's Lead Refining by Electrolysis	3 0 2 5 2 5 1 0 2 5 3 0 2 5	50 50 50 50 50 50 50
Betts's Lead Refining by Electrolysis	3 0 2 5 2 5 1 0 2 5 3 0 2 5 3 0 2 5	00 50 50 50 50 50 50 50
Betts's Lead Refining by Electrolysis	3 0 2 5 2 5 1 0 3 0 2 5 3 0 2 5 3 0 2 5	00 50 50 50 50 50 50 50
Betts's Lead Refining by Electrolysis	3 0 2 5 2 5 1 0 2 5 3 0 2 5 3 0 2 5	00 50 50 50 50 50 50 50
Betts's Lead Refining by Electrolysis	3 0 2 5 2 5 1 0 2 5 3 0 2 5 3 0 2 5 2 5	00 50 50 50 50 50 50 50
Betts's Lead Refining by Electrolysis	3 0 2 5 2 5 3 0 2 5 3 0 2 5 3 0 2 5 2 5	00 50 50 50 50 50 50 50 50 50 50 50 50 5
Betts's Lead Refining by Electrolysis	3 0 2 5 2 5 3 0 2 5 3 0 2 5 1 0 2 5 1 0 0 2 5 1 0 0 2 5 1 0 0 2 5 1 0 0 2 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 50 50 50 50 50 50 50 50 50 50
Betts's Lead Refining by Electrolysis	3 0 2 5 2 5 3 0 2 5 3 0 2 5 3 0 2 5 2 5	00 50 50 50 50 50 50 50 50 50 50
Betts's Lead Refining by Electrolysis	3 0 2 5 2 5 3 0 2 5 3 0 2 5 1 0 2 5 1 0 0 2 5 1 0 0 2 5 1 0 0 2 5 1 0 0 2 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 50 50 50 50 50 50 50 50 50 50
Betts's Lead Refining by Electrolysis	3 0 2 5 2 5 1 0 2 5 3 0 2 5 3 0 2 5 2 5 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6	00 50 50 50 50 50 50 50 50 50 50 50 50 5
Betts's Lead Refining by Electrolysis	3 0 2 5 2 5 3 0 2 5 3 0 2 5 1 0 2 5 1 0 0 2 5 1 0 0 2 5 1 0 0 2 5 1 0 0 2 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 50 50 50 50 50 50 50 50 50 50 50 50 5
Betts's Lead Refining by Electrolysis	3 0 2 5 2 5 3 0 2 5 3 0 2 5 3 0 2 0 2 5 3 0 2 0 2 0 3 0 3 0 2 0 3	50 50 50 50 50 50 50 50 50 50
Betts's Lead Refining by Electrolysis	3 0 2 5 2 5 1 0 2 5 3 0 2 5 3 0 2 5 1 0 2 5 2 5 1 0 2 5 2 5 3 0 2 5 2 5 3 0 2 5 3 0 2 5 3 0 2 5 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0	50 50 50 50 50 50 50 50 50 50 50 50 50 5
Betts's Lead Refining by Electrolysis	3 0 2 5 2 5 1 0 3 0 2 5 3 0 2 5 3 0 2 5 3 0 2 5 3 0 2 5 5 1 0 2 5 8 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0	00 50 50 50 50 50 50 50 50 50 50 50 50 5
Betts's Lead Refining by Electrolysis	3 0 2 5 2 5 1 0 2 5 3 0 2 5 3 0 2 5 1 0 2 5 2 5 1 0 2 5 2 5 3 0 2 5 2 5 3 0 2 5 3 0 2 5 3 0 2 5 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0	50 50 50 50 50 50 50 50 50 50 50 50 50 5

MINERALOGY.

Baskerville's Chemical Elements. (In Preparation.). Boyd's Map of Southwest Virginia		
Boyd's Map of Southwest Virginia Pocket-book form.	\$ 2	00
* Browning's Introduction to the Karer Elements8vo,	1	50
Brush's Manual of Determinative Mineralogy. (Penfield.)8vo, Butler's Pocket Hand-book of Minerals16mo, mor.		00
Chester's Catalogue of Minerals		00
Cloth.		28
* Crane's Gold and Silver		00
* Crane's Gold and Silver	1	00
Dana's Second Appendix to Dana's New "System of Mineralogy."		
Large 8vo,		
Manual of Mineralogy and Petrography		00
Minerals and How to Study Them		50
System of MineralogyLarge 8vo, half leather, Text-book of Mineralogy8vo,		00
Douglas's Untechnical Addresses on Technical Subjects		00
Eakle's Mineral Tables		28
Eckel's Stone and Clay Products Used in Engineering. (In Preparation).	-	
Eckel's Stone and Clay Products Used in Engineering. (In Preparation). Goesel's Minerals and Metals: A Reference Book16mo, mor.	3	00
Groth's Introduction to Chemical Crystallography (Marshall)12mo,	1	25
* Hayes's Handbook for Field Geologists16mo, mor.		50
Iddings's Igneous Rocks		00
Rock Minerals	5	00
With Thumb Index	ķ	00
* Martin's Laboratory Guide to Qualitative Analysis with the Blow-	3	v
pipe		60
Merrill's Non-metallic Minerals. Their Occurrence and Uses	4	00
Stones for Building and Decoration	5	00
* Penfield's Notes on Determinative Mineralogy and Record of Mineral Tests.		
8vo, paper,		5 0
Tables of Minerals, Including the Use of Minerals and Statistics of Domestic Production		^
* Pirsson's Rocks and Rock Minerals		00 50
* Richards's Synopsis of Mineral Characters		25
* Ries's Clays: Their Occurrence, Properties and Uses		00
* Ries and Leighton's History of the Clay-working Industry of the United		
States8vo,	2	50
* Tillman's Text-book of Important Minerals and Rocks8vo.		00
Washington's Manual of the Chemical Analysis of Rocks 8vo,	2	00
•		
MININA		
MINING.		
* Beard's Mine Gases and Explosions Large 12mo,		00
Boyd's Map of Southwest VirginiaPocket-book form,		00
* Crane's Gold and Silver		00
* 8vo, mor.		00
Douglas's Untechnical Addresses on Technical Subjects		00
Eissler's Modern High Explosives8vo.		00
Goesel's Minerals and Metals: A Reference Book16mo, mor.	_	00
Ihlseng's Manual of Mining		00
* Iles's Lead Smelting	2	
Peele's Compressed Air Plant for Mines		00
Riemer's Shaft Sinking Under Difficult Conditions. (Corning and Peele).8vo.		00
* Weaver's Military Explosives		00
Treatise on Practical and Theoretical Mine Ventilation 12mo.	1	50 25

SANITARY SCIENCE.


Association of State and National Food and Dairy Departments, Hartford		
	•-	
Meeting, 1906		
Jamestown Meeting, 19078vo,		
* Bashore's Outlines of Practical Sanitation		25
Sanitation of a Country House		00
Sanitation of Recreation Camps and Parks	1	
Folwell's Sewerage. (Designing, Construction, and Maintenance.)8vo,	3	00
Water-supply Engineering8vo,	4	00
Fowler's Sewage Works Analyses	2	00
Fuertes's Water-filtration Works	2	50
Water and Public Health	1	50
Gerhard's Guide to Sanitary Inspections		50
* Modern Baths and Bath Houses8vo,		00
Sanitation of Public Buildings		50
Hazen's Clean Water and How to Get It Large 12mo,		50
Filtration of Public Water-supplies		00
	3	w
Kinnicut, Winslow and Pratt's Purification of Sewage. (In Preparation.) Leach's Inspection and Analysis of Food with Special Reference to State		
Leach's inspection and Analysis of Food with Special Reference to State	_	
Control	7	
Mason's Examination of Water. (Chemical and Bacteriological)12mo,	1	25
Water-supply. (Considered principally from a Sanitary Standpoint).		
8vo,	4	00
* Merriman's Elements of Sanitary Enigneering	2	00
Ogden's Sewer Construction8vo,	3	00
Sewer Design12mo,	2	00
Parsons's Disposal of Municipal Refuse		00
Prescott and Winslow's Elements of Water Bacteriology, with Special Refer-	-	w
ence to Sanitary Water Analysis	1	50
* Price's Handbook on Sanitation		50
Richards's Cost of Cleanness		00
Cost of Food. A Study in Dietaries		00
Cost of Living as Modified by Sanitary Science		00
Cost of Shelter12mo,		00
* Richards and Williams's Dietary Computer8vo,	1	50
Richards and Woodman's Air, Water, and Food from a Sanitary Stand-		
point	2	00
* Richey's Plumbers', Steam-fitters', and Tinners' Edition (Building		
Mechanics' Ready Reference Series)16mo, mor.	1	50
Rideal's Disinfection and the Preservation of Food	4	00
Sewage and Bacterial Purification of Sewage 8vo,		00
Soper's Air and Ventilation of Subways		50
Turneaure and Russell's Public Water-supplies		00
Venable's Garbage Crematories in America		00
Method and Devices for Bacterial Treatment of Sewage 8vo,		00
Ward and Whipple's Freshwater Biology. (In Press.)	٠	00
Whipple's Microscopy of Drinking-water8vo,	,	50
* Typhoid Fever Large 12mo,		00
		00
Value of Pure Water Large 12mo,		
Winslow's Systematic Relationship of the CoccacesLarge 12mo,	Z	50
· · · · · · · · · · · · · · · · · · ·		
MISCELLANEOUS.		
Emmons's Geological Guide-book of the Rocky Mountain Excursion of the		
		20
International Congress of GeologistsLarge 8vo.		50
Ferrel's Popular Treatise on the Winds 8vo.		00
Fitzgerald's Boston Machinist	1	00
Gannett's Statistical Abstract of the World24mo,	_	75
Haines's American Railway Management		50
Hanausek's The Microscopy of Technical Products. (Winton)	- 5	00

Jacobs's Betterment Briefs. A Collection of Published Papers on Or-		
ganized Industrial Efficiency8vo,	\$ 3	50
Metcalfe's Cost of Manufactures, and the Administration of Workshops. 8vo,	5	00
Putnam's Nautical Charts	2	00
Ricketts's History of Rensselaer Polytechnic Institute 1824-1894.		
Large 12mo,	3	00
Rotherham's Emphasised New TestamentLarge 8vo,	2	00
Rust's Ex-Meridian Altitude, Azimuth and Star-finding Tables8vo.	5	00
Standage's Decoration of Wood, Glass, Metal, etc	2	00
Thome's Structural and Physiological Botany. (Bennett)16mo,	2	25
Westermaier's Compendium of General Botany. (Schneider)8vo,	2	00
Winslow's Elements of Applied Microscopy12mo,	1	5 0

HEBREW AND CHALDEE TEXT-BOOOKS.

Gesenius's Hebrew and Chaldee Lexicon to the Old Testament Scriptures.	
(Tregelles.)Small 4to, half mor,	5 00
Green's Elementary Hebrew Grammar12mo,	

Esic S

· .

14 DAY USE RETURN TO DESK FROM WHICH BORROWED

THIS		DEPT.
AN		ast date stamped below, or which renewed, ject to immediate recall.
THIS		
OVER	RES'S ED	
	OCT 1 1962	
AL	SENT ON ILL	
DEC 1	DEC - 1 1997	
FEB	U. C. BERKELEY	
DE		
SEP		
-		
-		
C	LD 21A-50m-3,'62 (07097s10)476B	General Library University of California Berkeley
1	23 1500	T'62KB #
		LD 21-50m-8,-32

196479 TJ270 P3

THE UNIVERSITY OF CALIFORNIA LIBRARY

